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Interpretability
When a model has many features and plotting all one-

dimensional summary statistics is troublesome, vivo indicates
which variables are worth paying attention to. The vivo is an
R package which calculates instance level feature importance
(measure of local sensitivity). The feature importance is based
on Ceteris Paribus profiles and can be calculated in a few vari-
ants.

Ceteris Paribus Profiles
Ceteris Paribus is a latin phrase meaning ”other things held constant” or ”all else un-

changed”. Ceteris Paribus Plots show how the model response depends on changes
in a single input variable, keeping all other variables unchanged. They work for
any Machine Learning model and allow for model comparisons to better understand
how a black box model works.
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Figure 1: The first plot shows the Ceteris Paribus profile for a single observation. The
plot on the right shows the profiles for a few observations. In the lower left corner we
have profiles for observations and a line showing their aggregation - a partial depen-
dency plot. The last plot shows the aggregation of profiles using clustering.

Methodology
The our measure of local variable importance is based on the oscillations of the

Ceteris Paribus profiles. In particular, the larger the deviation along the corresponding
Ceteris Paribus profile, the larger influence of an explanatory variable on prediction
at a particular instance. For a variable that exercises little or no influence on model
prediction, the profile will be flat or will barely change.
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Figure 2: The value of the colored area is our measure. The larger the area, the more
important is the variable.

Comparison of the proposed measure with LIME, iBreakDown
and SHAP

Below is a comparison of methods of local importance of variables based on the
black box model - random forest. The vivo, iBreakDown and LIME measures indicate
other variables as significant. This only confirms the essence of using various tools
when explaining black box models.
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Figure 3: Comparison of methods

Details
Oscillations of Ceteris Paribus profiles are easy to interpret and understand. By

using the average of oscillations, it is possible to select the most important variables for
an instance prediction. This method can easily be extended to two or more variables.
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