

survex: model-agnostic explainability for survival analysis

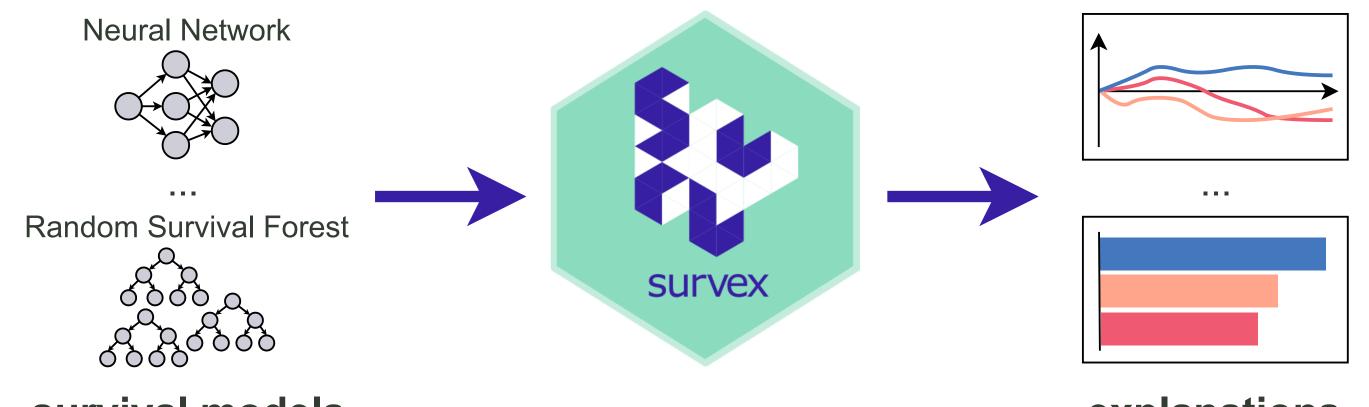
Mikołaj Spytek¹, Mateusz Krzyziński¹, Hubert Baniecki², Przemysław Biecek^{1,2}

¹MI2.AI, Warsaw University of Technology ²MI2.AI, University of Warsaw

Let's talk about: explainable artificial intelligence, survival analysis, responsible machine learning

Introduction

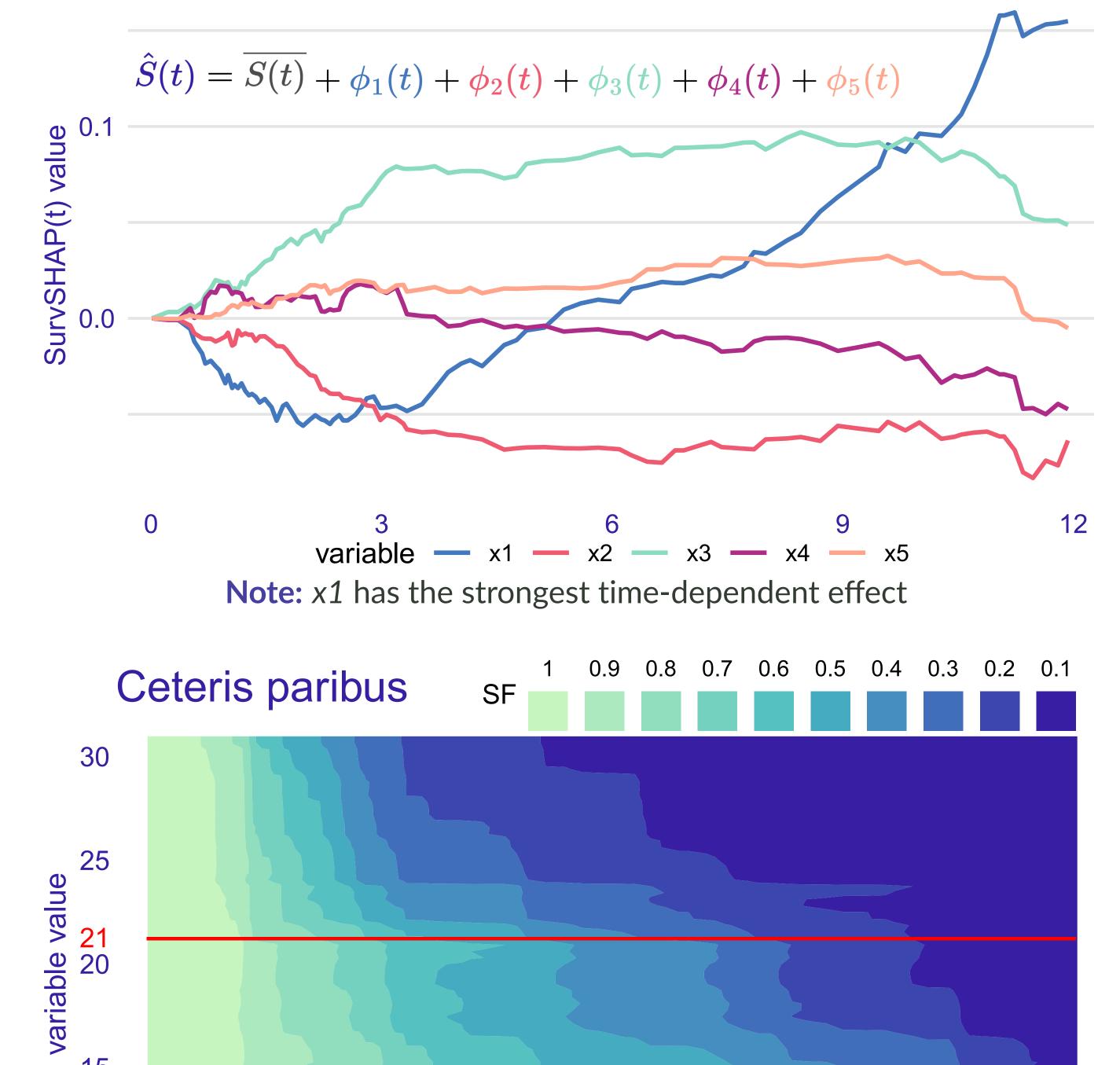
Survival analysis is a task dealing with time-to-event prediction based on censored data. The main difference separating it from other areas of supervised learning is its output in the form of **survival probability distribution**. Survival models are predominantly used in medicine and insurance and help make critical decisions. This means that increasing trust in the models via explanations is vital, however standard post-hoc explanations cannot be applied directly due to the nature of the models' output. *survex* provides model-agnostic explanations for survival models in the form of an accessible **R** package [1]. These are extensions of standard methods [2] adapted for models with functional output, as well as implementations of methods developed specifically for survival analysis [3, 4].



Local explanations help better understand model behavior around a single observation (e.g., patient):

- SurvSHAP(t) values show variable contributions to a model prediction at each considered time.
- SurvLIME explanations show local importance of variables by fitting a surrogate Cox Proportional Hazards model.
- Ceteris paribus plots show how the model output depends on changes of a single variable.

SurvSHAP(t)



survival models

explanations

Global explanations

Global explanations are designed to understand the general behaviour of the model for a given population.

- Partial dependence plots are aggregates of ceteris paribus explanations and show how changing a variable affects average model output.
- Permutational variable importance presents a ranking of the variables by calculating how the performance changes after permuting a variable.

permutations 90'0 40.0 after OSS

Permutational variable importance



Note: Different variables rank as the most important at different timepoints

Conclusion

- *survex* incentivizes the popularization of explainability methods in domains where survival analysis is applied.
- **V** It benefits various stakeholders e.g. physicians and bioinformaticians in extracting knowledge from data and model analysis.
- In-depth analysis of the prediction helps medical personnel decide how adequate it is, in turn leading to development of personalized medicine.

Contact info

- mikolaj.spytek.stud@pw.edu.pl
- \mathbf{C} https://github.com/ModelOriented/survex
- - www.mi2.ai

15

3 0 6 9

Note: Ambiguous behavior around value *x*4 = 24

Code example

library(survex)

library(survival); library(randomForestSRC) rf_model <- rfsrc(Surv(time, event)~., data=df)</pre> rf_explainer <- explain(rf_model)</pre> perm_var_imp <- model_parts(rf_explainer)</pre> plot(perm_var_imp)

i Python implementation of SurvLIME and SurvSHAP(t) methods is also available at https://github.com/MI2DataLab/survshap.

References

12

- [1] Mikołaj Spytek, Mateusz Krzyziński, Hubert Baniecki, and Przemysław Biecek. survex: Explainable Machine Learning in Survival Analysis, 2022. R package version 0.1.1.
- [2] Przemyslaw Biecek and Tomasz Burzykowski. Explanatory Model Analysis. Chapman and Hall/CRC, New York, 2021.
- [3] Maxim S. Kovalev, Lev V. Utkin, and Ernest M. Kasimov. SurvLIME: A method for explaining machine learning survival models. *Knowledge-Based Systems*, 203:106164, 2020.
- [4] Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, and Przemysław Biecek. SurvSHAP(t): Time-dependent explanations of machine learning survival models. *arXiv* preprint arXiv:2208.11080, 2022.

Acknowledgements

Special thanks to Anna Kozak, Katarzyna Woźnica and Zuzanna Kwiatkowska for the valuable comments and discussions about this work. This work was financially supported by the NCBiR grant INFOSTRATEG-I/0022/2021-00 and the NCN Sonata Bis-9 grant 2019/34/E/ST6/00052.