Risk assessment of Polish joint stock companies using machine learning methods

Wroclaw University of Economics and Business

Aleksandra Szymura aleksandra.szymura@ue.wroc.pl

INTRODUCTION

Risk assessment plays an important role in companies functioning properly. It allows companies to make their decision-making **RISK ASSESSMENT – DATASET** processes more effective, investors to minimize the negative effects of their investments, and companies' activities from 2016-2018 banks to check potential borrowers before lending to them. An assessment of the company companies from 2017-2019 can be made for several identified risks e.g. bankruptcy, insolvency, or loss of liquidity. The first mentions of business evaluation methods appeared in the literature in the first half of the 20th century, while statistical methods began to be used for this purpose in the 1960s. One of the pioneers in this field was Altman (Altman RISK ASSESSMENT – RESULTS 1968), who presented a model for predicting corporate bankruptcy. He used discriminant analysis to achieve this, which was popular in the literature for the following years. The 1980s marked the growth in the use of logistic regression (Zmijewski 1984). Over time more advanced machine learning methods have been applied. The 1990s belonged to researchers who began to use neural networks (Lacher et al. 1995), and the 21st century marked the beginning of the popularity of gradient boosting methods (Pham and Ho 2021).

OBJECTIVE

Presentation of the methodology to assess the risk of Polish joint stock companies.

Independent variables: financial indicators of Dependent variables: financial information on

RISK ASSESSMENT

SECTOR – DATASET

Variables: financial indicators of banks' activities from the 2018 and 2020 years.

Table 1. Number of businesses included in the analysis by year.

Year	Number of Companies
2017	305
2018	311
2019	312

Sample stratification: by year, sales, dependent variable Train/test split: 70/30 **Class balancing method:** SMOTE Methods: classification models

risk of penalties or compensation payments

Table 2. Mean value of metrics for a 10-fold process run.				
Model	AUC	Cohen's Kappa		
Logistic regression	0.6522	0.1903		
Decision tree	0.5913	0.1767		
XGBoost	0.7159	0.2754		
LightGBM	0.7178	0.2716		
CatBoost	0.7321	0.3027		
• liquidity risk Table 3. Mean value of metrics for a 10-fold process run.				
Table 3. Mean value of me	etrics for a 10-fo	-		
	etrics for a 10-fo AUC	ld process run. Cohen's Kappa		
Table 3. Mean value of me		-		
Table 3. Mean value of me Model	AUC	Cohen's Kappa		
Table 3. Mean value of me Model Logistic regression	AUC 0.8505	Cohen's Kappa 0.4017		
Table 3. Mean value of me Model Logistic regression Decision tree	AUC 0.8505 0.6955	Cohen's Kappa 0.4017 0.3447		
Table 3. Mean value of meModelLogistic regressionDecision treeXGBoost	AUC 0.8505 0.6955 0.8574	Cohen's Kappa 0.4017 0.3447 0.5011		

able 5. Number of ba	anks included in the analysis by year	
Year	Number of banks	
2018	16	
2020	14	

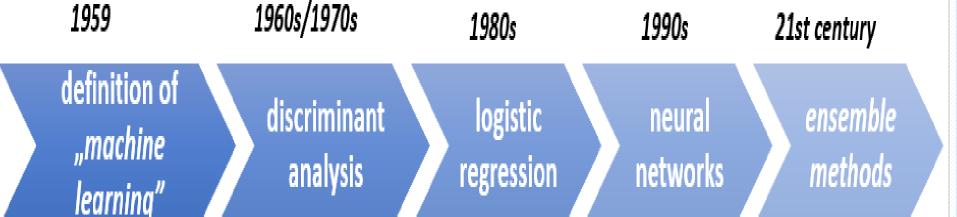
RISK ASSESSMENT WITHIN SECTOR – RESULTS

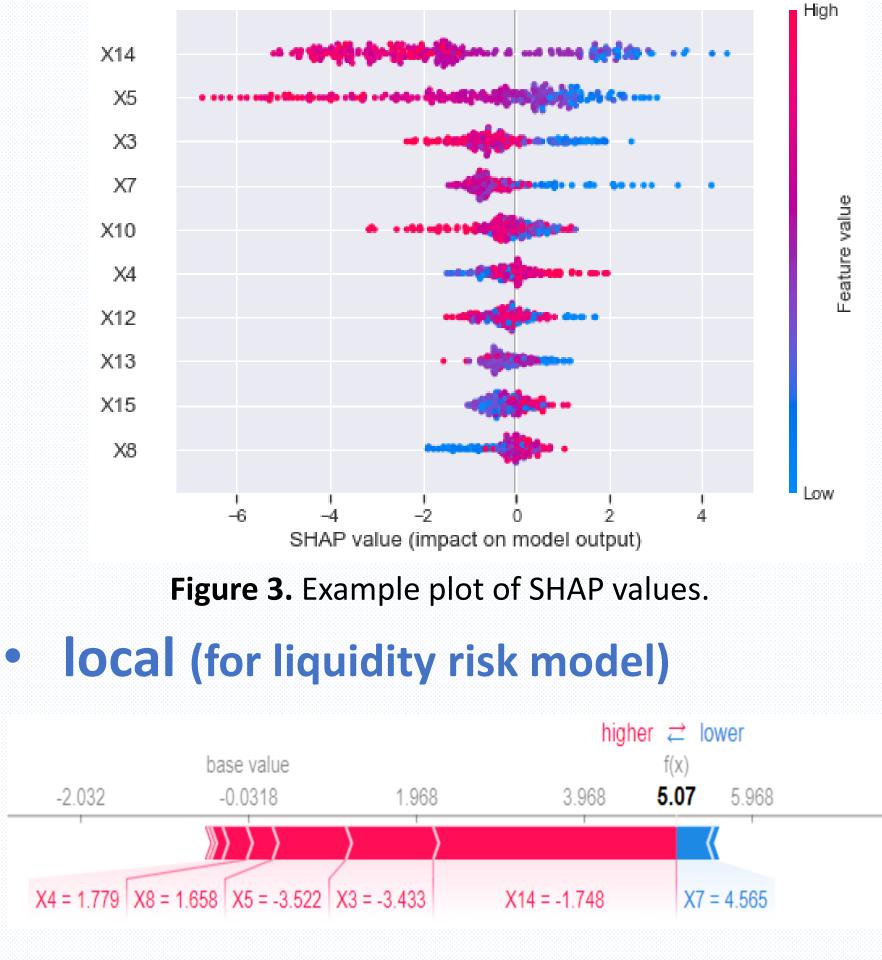
Methods: Isolation forest, DBSCAN, PCA

2018

Table 6. Banks that are labeled as anomalies.			
Isolation forest	DBSCAN		
IDEA BANK	IDEA BANK		
BANK POLSKIEJ	BANK POLSKIEJ		
SPOLDZIELCZOSCI	SPOLDZIELCZOSCI		
	EURO BANK		
	NEST BANK		
	•		

BANK POLSKIEJ SPOLDZIELCZOSC




Figure 1. History of using statistical methods to evaluate companies.

N	IETHOD	S	
Machine	supervised learning		prediction events
learning	unsupervised learning		sector analysi

Figure 2. Methods used in research.

EXPLAINABILITY

global (for liquidity risk model)

risk of loss from operations

Table 4. Mean value of metrics for a 10-fold process run.				
Model	AUC	Cohen's Kappa		
Logistic regression	0.8436	0.5382		
Decision tree	0.6771	0.3466		
XGBoost	0.8101	0.4618		
LightGBM	0.8164	0.4852		
CatBoost	0.8299	0.5008		

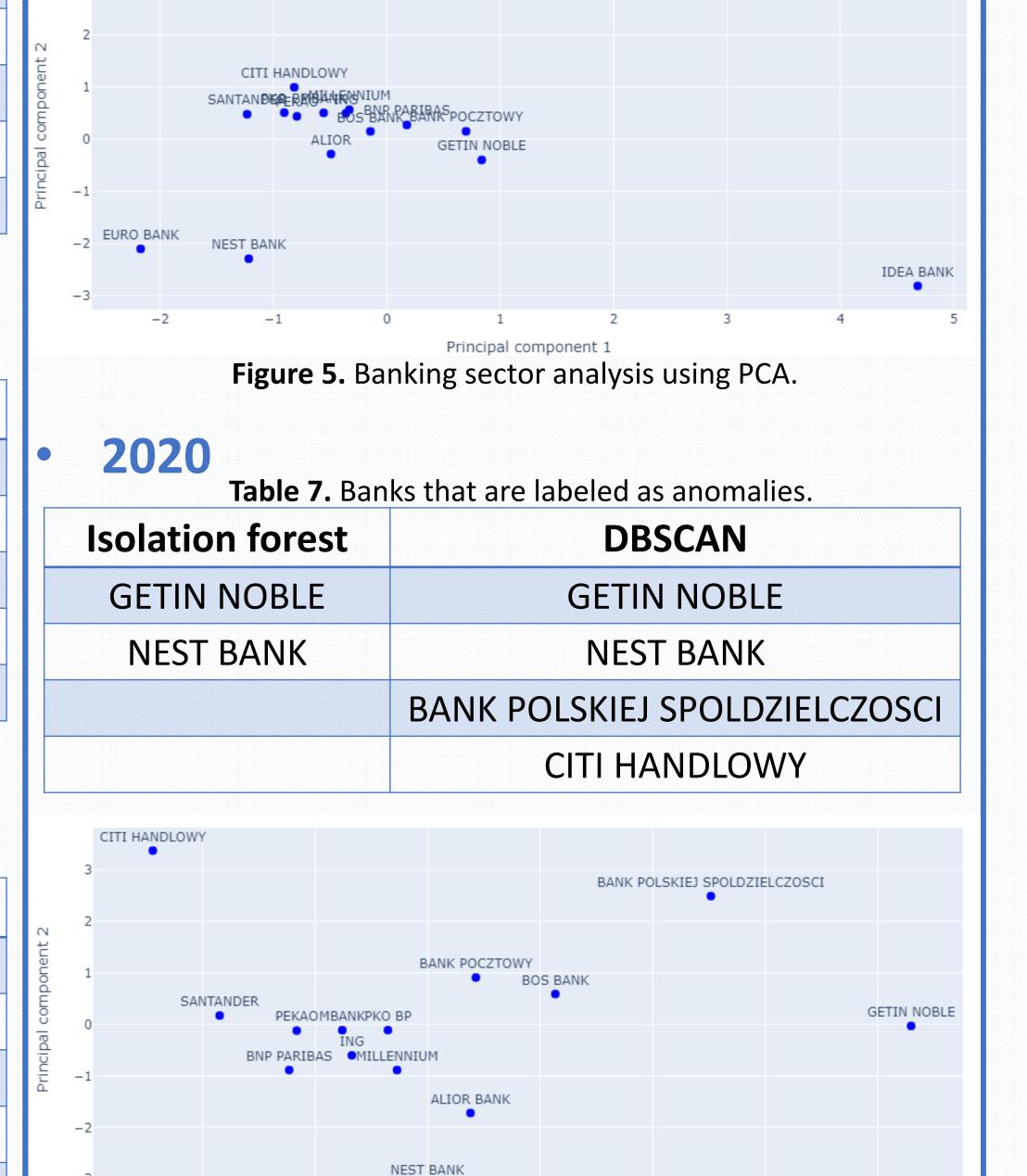


Figure 4. Example plot of SHAP values for one company.

CatBoost 0.8299

SUMMARY

n of

7.968

- Gradient boosting methods are more stable and effective than *white-box* models.
 - Anomaly detection methods can be used to identify companies that are better or worse than others in a given period in the sector.

Table 8. Effectiveness and stability of the created risk models. Effectiveness Model **Stability** CatBoost XGBoost **Penalties** Decision tree Decision tree LightGBM/CatBoost Decision tree Liquidity Logistic regression/XGBoost Decision tree Logistic regression XGBoost Loss **Decision tree** Decision tree

Principal component

Figure 6. Banking sector analysis using PCA.

REFERENCES

-2

1. Altman, Edward I. 1968. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance 23: 589–609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x. 2. Lacher, R. C., Pamela K. Coats, Shanker C. Sharma, and L. Franklin Fant. 1995. A neural network for classifying the financial health of a firm. European Journal of Operational Research 85: 53-65. https://doi.org/10.1016/0377-2217(93)E0274-2.

3. Pham, Xuan T.T., and Tin H. Ho. 2021. Using boosting algorithms to predict bank failure: An untold story. International Review of Economics & Finance 76: 40–54. https://doi.org/10.1016/j.iref.2021.05.005. 4. Zmijewski, Mark E. 1984. Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research 22: 59–82. https://doi.org/10.2307/2490859.