Continual learning on 3D point clouds with random compressed rehearsal

Maciej Zamorski^{a,e}, Michał Stypułkowski^b, Konrad Karanowski^a, Tomasz Trzciński^{c,d,f}, Maciej Zięba^{a,f} ^a Wrocław University of Science and Technology ^b University of Wrocław ^c Warsaw University of Technology ^d Jagiellonian University in Krakow ^e Hemolens Diagnostics ^f Tooploox

Warsaw University of Technology

Continual learning scenarios

- Idea: Train model on the new dataset (task) without losing the model's performance on the data (task) it was previously trained on.
- Task-Incremental Learning: Task is given to the system 1st or 2nd class (e.g. 0 or 1)?
- Class-Incremental Learning: Task needs to be inferred regular classification between 0 and 9.

Point Clouds

- Irregular 3-d data type
- Set of points in \mathbb{R}^3
- Unstructured
- Unordered

Random Compressed Rehearsal

- E Encoder module
- D Decoder module
- C Classifier module
- L_r Chamfer Distance reconstruction loss
- L_c CrossEntropy classification loss

- 1. Train RCR to reconstruct and classify Task 1 samples.
- 2. Compress Task 1 samples using random subsampling. In our experiment we sample 100 out of 2048 points.
- 3. Add compressed data to the set of Task 2 samples, extend output layer of classifier C and resume training.

Results

References

- Zamorski, Maciej, et al. "Continual learning on 3D point clouds with random compressed rehearsal." arXiv preprint arXiv:2205.08013 (2022).
- Van de Ven, Gido M., and Andreas S. Tolias. "Three scenarios for continual learning." arXiv preprint arXiv:1904.07734 (2019).
- Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." IEEE transactions on pattern analysis and machine intelligence 40.12 (2017): 2935-2947.
- Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the national academy of sciences 114.13 (2017): 3521-3526.
- 5. Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2017.
- Dong, Jiahua, et al. "I3DOL: Incremental 3d object learning without catastrophic forgetting." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 7. 2021.