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Introduction
Continual learning with an increasing number of classes (Figure 1) is a challenging
task. The difficulty rises when each example is presented exactly once (online learning)
and when a memory buffer is unavailable.

We propose the fully differentiable ensemble method called DE&E that allows us to ef-
ficiently train an ensemble of neural networks in the end-to-end regime. The presented
architecture (Figure 2) is inspired by an Encoders and Ensembles (hereafter referred to as
E&E) [1] and adapted to the most challenging task-free online class incremental setup.

Figure 1: Class incremental continual learning setup.

Architecture
We extend the E&E architecture and improve it by:
• introducing a differentiable KNN layer (soft KNN) [2]
• proposing a novel approach to aggregate ensemble predictions

Input image is processed by the feature extractor. Each classifier has an associated key,
which is a random vector of the same length as the feature extractor output. Obtained
embeddings are used to find the most relevant classifiers according to their keys. The
soft KNN layer approximates the soft KNN scores. Predictions are weighted in the vot-
ing layer by both cosine similarity and soft KNN scores. Final output is the class with
the highest voting score.

Figure 2: Proposed model architecture.

Soft KNN and voting procedure
The standard KNN algorithm is often implemented using ordinary sorting operations that
make it non-differentiable. However, it is possible to obtain a differentiable approxi-
mation of the KNN model by solving the Optimal Transport Problem [3]. Based on this
concept, we add a soft KNN layer to the model architecture.

We use both cosine similarity and soft KNN approximation to weight the predictions by
giving the higher impact for classifiers with keys similar to extracted features. The final
prediction is obtained as follows:

ŷ =

∑N
n=1 γncnŷn∑N

n=1 cn

where N is the number of classifiers, cn is the cosine similarity between the input and
classifier keys, γn is the soft KNN approximation and the ŷn is the classifier output.

Experiments result

For all setups evaluated, our model performed best improving results of main reference
method (E&E) up to 6%. We can also see a significant difference in achieved accuracy
between the DE&E approach and baselines. Furthermore, it achieved this results with-
out replaying training examples seen in the past. For the ensemble of 128 classifiers and
MNIST dataset, our architecture achieved accuracy more than 18% better than the best
method with a memory buffer.

MNIST (10 splits) CIFAR-10 (5 splits)

N = 16 N = 128 N = 64 N = 128

Naive 14.41 ±5.99 11.63 ±2.22 19.65 ±0.33 19.70 ±0.36

LwF 12.38 ±3.99 9.88 ±0.55 19.48 ±0.55 19.62 ±0.60

EWC 14.33 ±4.44 10.97 ±2.32 19.52 ±0.29 19.88 ±0.50

SI 10.18 ±1.00 17.22 ±4.64 17.97 ±2.40 21.32 ±5.76

CWR* 16.41 ±5.42 10.38 ±0.79 18.92 ±2.97 22.41 ±2.00

GEM (10 / exp) 67.81 ±2.61 58.92 ±6.34 30.75 ±1.41 29.27 ±1.46

A-GEM (10 / exp) 53.59 ±5.21 21.31 ±15.90 39.86 ±14.25 36.12 ±6.19

Replay (10 / exp) 74.49 ±3.84 69.02 ±4.90 44.03 ±3.72 43.82 ±7.10

E&E 78.16 ±1.85 85.60 ±0.52 46.34 ±1.98 56.24 ±1.41

DE&E (ours) 84.19 ±1.00 87.54 ±0.24 48.78 ±1.34 59.36 ±0.73

Architecture advantages

The proposed method achieves higher accuracy having the same number of param-
eters. The smaller the ensemble, the higher the gain in accuracy. For an ensemble of
1024 classifiers, the accuracy is already very close, suggesting that the gain decreases
with large ensembles (Figure 2).

We also observed significantly reduced forgetting relative to the reference method (Fig-
ure 3). The larger the ensemble the relatively less knowledge is forgotten. Stronger spe-
cialization amplified by the introduced voting method makes classifiers less likely to lose
acquired knowledge.

Figure 3: Number of weights in ensembles (16,
128, 1024 classifiers) and achieved accuracy (%)
on 10-split MNIST.

Figure 4: Averaged forgetting rate (the lower
the better) for ensembles evaluated on 10-split
MNIST.

Summary

We showed improved accuracy for all of the cases studied and achieved SOTA results.
We have shown that it is possible to noticeably improve the quality of classification and
reduce forgetting rate using the ensemble with the same number of parameters. This
effect is observed especially in small ensembles that gained significantly higher perfor-
mance. The presented architecture outperforms methods with a memory buffer and en-
ables researchers to make further steps towards overrun the current SOTA in class incre-
mental problems. Undoubtedly, the field of continual learning using ensemble methods
needs more attention due to its vast potential.
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