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Problem

Joint entity and relation extraction can be treated as a text-to-graph, task composed of
four NLP subtasks:

* mention detection e entity classification

e coreference resolution e relation classification

We propose a deep learning method based on memory-like modules enhancing input
representation, resulting in better multi-task learning process. Solving this problem on
the document-level demands additional, intra-sentence inference based on coreferring
pieces of information in a different part of the document. The result 1s a graph of
spans from the text that represents mentions, grouped 1n coreference clusters, typed, and
connected to each other by relations.
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Figure 1: Document-level Joint entity and relation extraction as text to graph problem.

Model

We used multi-task learning architecture for joint entity and relation extraction proposed
in [1], which processes tasks 1n a pipeline - one after another.

We improve and extend it by:

e introducing custom and writable memory matrix;

e backward passing of knowledge to earlier tasks from the latter by reading memory to
alter the representations of tokens and mentions;

Born in
| PER | [PER] » | LOC LOC Relations
. .\\‘W-t .
Relation Memory<5 = Relation Classification ]
&
. ~ PER || || || Loc PER| [ | lLoc 532:;9;
: Wit d
ST LR < - Entity Classification ]
.
' Coref
| ) U Clusters
T Read [T , | *
Coreference Resolution
& J
> Ll [ L) ] Mentons
Memory f b
Enhanced Span-based Mention Detection
Representation N y
> J ] Tokens
Language Model
f
"Come Together"
—— | is a song by the
=
Figure 2: Proposed model architecture.
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Memory Enhanced Representation

Based on writable Memory M and learnable memory reading weights W we propose
two methods of altering input H using memory as in [2].
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Figure 3: Memory read module used to enhance
Input representation

e mean pooling for inverse read;

e concatenation for normal read;

Memory Write Operation

Memory stores learnable representations used to classify entities and relations instances
using bilinear similarity .S between input E: and memory M.
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Figure 4: Memory write module using bilinear
similarity classifier input 2 and memory M con-
tent

Experimental setup

We conducted several experiments trying different architecture parameters such as mem-
ory size and memory warmup to evaluate quality of proposed method. We trained and
evaluated our model on DocREDI[3]: dataset (Human-annotated) tfollowing the same
train-test splitas in [1] .

Dataset: Experiments:

* Adam optimizer;
DocRED (Human-annotated) dataset:

*5¢-5 learning rate with 0.1 Linear
e 5053 documents;

Warmup;

° S entity types; e batch size: 2;

* 96 relation types;  repeated for 5 different random seeds;

Experiments results

To compare proposed method to reproduced results from [1] we used F1-score (micro) on
each of 4 subtasks. Presented results are based on 5 separate runs with standard deviation
provided.

Model Rel. F1-score Ent. Fl-score Coref. Fl-score Men. F1-score
JEREX (GRC) [1] 38.65 +0.13 79.66 +0.26 82.35 +0.25 02.54 40.13
ours (GRC) 38.91 +o0.15 79.72 +0.06 82.43 +0.06 92.63 +0.12
JEREX (MRC) [1] 39.93 +0.47 79.68 40.20 82.41 +0.17 92.54 +0.12
ours (MRC) 39.89 +0.27 79.71 +0.31 82.42 +0.28 92.77 +0.17
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