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Introduction

Objective: Localization of coronary ostia landmarks in Computed Tomography Angiography (CTA) to facilitate various
automatic diagnostic procedures.

Challenge: The anatomical differences between patients and differences in image acquisition.

Contribution:
▶ We propose one-step method of coronary ostia landmark localization that utilizes a residual

U-Net with heatmap matching and 3D Differentiable Spatial to Numerical Transform (DSNT).

▶ We evaluate the method on two datasets a Coronary Computed Tomography Angiography (CCTA) dataset
containing 201 scans and a publicly available ImageTBAD dataset containing
77 CTA scans annotated with coronary ostia landmarks.

▶ We extend ImageTBAD dataset with coronary ostium annotations and share these annotations with the public
for further research https://www.synapse.org/#!Synapse:syn35789568/wiki/.

Datasets

The experiments were performed on two datasets. CTA ImageTBAD dataset is significantly lower compared to the
CCTA dataset.Despite that, we decide to use it, as it is the only publicly available CT dataset known to the authors
with good enough quality for the task of ostia localization. Datasets’ details are given in the table below.

CCTA (private) TBAD (public)
# volumes 201 100 (77)
# females 87 31
# males 114 69
# medical centers 8 1
# scanner models 7 2
average patient’s age 69.3± 10.8 years 52.5± 11.3 years
volume size 512× 512× (130− 420) 512× 512× (135− 416)
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Example slices from datasets with ostium annotation highlighted in red

Method diagram

The input volume is processed by a residual U-Net fθ and a normalization function ϕ to predict heatmaps Ĥ. These
heatmaps are then transformed by a DSNT layer to coordinates predictions ŷ. The loss L consists of the Euclidean
distance LE between predicted coordinates ŷ and ground-truth coordinates y, and a divergence LD between predicted

heatmaps Ĥ and ground-truth heatmaps Hy. Predicted and ground-truth localization and heatmaps are highlighted in
red and green, respectively.
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DSNT

The Differentiable Spatial to Numerical Transform (DSNT) is a fully differentiable and non-trainable
layer. Due to this fact, numerical coordinates can be obtained during training and can be used in a
learning criterion since backpropagation does pass via DSNT. We define its 3D extension as follows:

DSNT(Ĥ) =
[
⟨Ĥ, X ⟩F ⟨Ĥ, Y ⟩F ⟨Ĥ, Z⟩F

]
,

where Ĥ = ϕ(H) is a normalized heatmap H output from the backbone fΘ(x) by a normalization
function ϕ(·), ⟨·, ·⟩F represents Frobenius inner product and X , Y and Z are grids in a form of
n ×m × l matrices used to calculate expected values of landmarks’ coordinate and are defined as:

X i , j , k =
2j − (n + 1)

n
, Y i , j , k =

2i − (m + 1)

m
, Z i , j , k =

2k − (l + 1)

l
.

Loss function

During training we utilize the Euclidean metric LE between the network output ŷ = DSNT(Ĥ) and
the ground-truth y. To achieve better results we use the Jensen-Shannon divergence regularization LD
as a term to calculate, and minimize the divergence between heatmap prediction Ĥ and appropriate
target normal distribution N (y, σ2). The complete loss is defined as follows:

L(Ĥ, y) = LE
(
DSNT(Ĥ), y

)
+ λLD(Ĥ, y),

with λ being a regularization coefficient hyper-parameter controlling the strength of the regularization.
The Euclidean loss LE is defined as:

LE(ŷ, y) = ∥ŷ − y∥2,
and the Jensen-Shannon divergence regularization LD is

LD(Ĥ, y) = DJS(Ĥ ∥ N (y, σ2)),

where DJS(·||·) is the Jensen-Shannon divergence.

Quantitative results

Comparison of the Euclidean distance error (mm) between proposed method and other approaches on
test volumes. Best results are bolded.

Model Landmark
CCTA dataset ImageTBAD dataset

Median Mean Std IQR Median Mean Std IQR

CNN (FC) Left CA ostium 6.70 6.84 2.98 3.82 8.38 9.43 4.20 4.98
Right CA ostium 6.83 7.22 3.51 4.97 13.65 13.06 5.40 5.66

Res. U-Net (FC) Left CA ostium 5.25 5.56 2.48 3.01 7.42 8.00 4.17 5.40
Right CA ostium 5.60 6.08 2.99 4.43 11.91 12.12 6.10 8.45

Res. U-Net (Heatmaps) Left CA ostium 1.21 1.45 1.23 0.76 3.63 3.85 1.44 2.00
Right CA ostium 1.03 1.38 1.33 0.91 3.65 3.74 2.25 3.48

Res. U-Net (DSNT) Left CA ostium 1.14 1.18 0.56 0.74 3.48 3.49 1.42 1.66
Right CA ostium 0.98 1.29 1.16 0.82 2.97 3.54 1.88 2.71

Success detection rate

ImageTBAD CCTA

Success Detection Rate (SDR) is defined as the percentage of predicted landmarks which have the
Euclidean distance to the reference landmark below the given threshold. For the clinically accepted
SDR range of 3.5mm, our method outperforms other approaches on the CCTA dataset achieving 97.73%
SDR at 3.5 mm. On the ImageTBAD dataset, which consist of more challenging volumes, all methods
perform much worse with our method achieving 55% SDR on the accepted range of 3.5 mm.

Discussion

Standard anatomy Anatomical outlier

One of the main challenges are anatomical differences between patients
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