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Cost is defined as a number of nodes which at
least one were inferenced by a neural network.

allowed cost. If search doesn’t finish after it with D Efl n |t| O n S

$ Computional budget is defined as a maximum
found solution, we say that problem is not solved.

to achieve ,,good” solve rate given small

Q Efficient approach menas that our search is able
computional budget



This solution is
great but...

K (distance between subgoals) is fixed

What about What about testing What are the
involving into action  many subgoals with approaches for
different distances?  different distance? adaptivity?

Filling gaps between subgoals with policy is
very costly, especially for bigger K

Do we hale always to fill those gaps?



Adaptivity: Motivational example




Adaptive approaches

MixSubS: for which node in search graph, we
generate on subgoal of each possible

Iterative Mixing is similar to MixSubS and
allows for advanced schedules of generators
to be used. In the consecutive iterations, the

distance. i-th generator is used to expand |_i nodes
In each iteration, MixSubS chooses a state before SW'tCh'nF to the next generator. This
with the highest value estimation V (s) to allows us to flexibly prioritize the better
process generators, but at the cost of tuning
additional hyperparameters I1, . . ., In. For
these reasons, it is not practical, but useful
as a reference point.
Strongest-first uses one generator at a time Longest-first prioritizes long subgoals over
with the longest distance not previously used the whole search procedure. Only if the
in state s. In each iteration, Strongest-first queue does not contain any nodes with the
chooses a state with the highest value higher k, it uses subgoals of lower distances.
estimation V (s) to process. The nodes are processed in the order of

their value estimation V (s).



Filling gaps

Filling gaps between subgoals is costly.

The longest distance to subgoal, the quality of Subgoal
Generator gets much worse

Weak Subgoal Generator is able to generate many invalid
subgoals

Running policy for filling those gaps has no sense —we would
like to avoid it




Verifier

@ Verifier is a neural network

{5 Verifier:: State x State = [0, 1]

Verifier(start_state, proposed subgoal state) predicts if policy is able to reach subgoal
(proposed by subgoal generator) strating from start state and leading to subgoal state

E It saves a lot of computations, especially on small budgets



Algorithm 2 Conditional low-level policy

Requires: (' steps limit
m  conditional low-level
policy network
M  model of the environment

function GET_PATH(s,, subgoal)

step «+ 0

S < Sp

action_path < ||

while step < C; do
action < 7.PREDICT(s, subgoal)
action_path.APPEND(action)
s < M NEXT_STATE(s, action)
if s = subgoal then

return action_path

step <— step+1
return ||

Algorithm 3 Verification algorithm

Requires: v verifier network
tni  upper threshold
t1, lower threshold

function 1S_VALID(s, s’)
if v(s,s’) > ty; then return True
else if v(s, s’) < t1, then return False

return GET_PATH(s, s") # ||




Results
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INT

Small budget (50 nodes) Large budget (1000 nodes)

with verifier without  with verifier without

BestFS - 1.7% - 36.7%
k=4 2.2%  0.1% = 82.4%  83.0%
LSubs k=3 4.0%  02%  89.6%  90.7%
k=2 21%  05%  89.8%  91.7%
k=1 0.0%  0.0%  347%  46.0%
k=1[4,3,2] 0.0%  0.0%  94.6%  95.0% :
MixSubS k=[3,2 1] 0.0%  0.0%  922%  92.9% COl N pa FISON
k= [3,2] 17.0%  14.8%  92.2%  93.5%

iterations = [1, 1, 1] 32.0% 30.1% 87.0% 88.6%
[terative mixing iterations = [10,1,1]  43.0% 44.8% 95.1% 96.0%

iterations = [4,2,1]  54.0%  52.1%  93.6%  95.5%
Strongest-first 39.5% 40.8% 88.5% 89.8%
Longest-first 59.0% 51.5% 95.7% 95.5%




= AdaSubs (ours) s KSUDS = BestFS
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INT out-of-distribution generalization
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Figure 3: Out-of-distribution performance of AdaSubS and kSubS for long proofs in INT with budget of 5000
nodes. Both methods were trained on proofs of length 15. Error bars correspond to 95% confidence intervals.
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