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Multi-label data

• Labels: (hypertension, heart disease, diabetes, lung disease,
thyroid disease)

• Label vector: Y = (1, 1, 1, 0, 0)

• Feature vector X = (X1, . . . ,Xp) (e.g. sex, age, diagnostic
tests, genetic data, etc.)

Main goal: predict Y using X .
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PU multi-label data

• Labels: (hypertension, heart disease, diabetes, lung disease,
thyroid disease)

• True label vector: Y = (1, 1, 1, 0, 0)

• Observed label vector: S = (1, 1, 0, 0, 0)
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Positive unlabelled multi-label classification

• Vector of features X = (X1, . . . ,Xp)
T .

• Vector of target variables (labels) Y = (Y1, . . . ,YK )
T is not

observed directly.

• We observe S = (S1, . . . ,SK )
T such that:

• Value Sk = 1 means that k-th target is positive, i.e. Yk = 1

• Value Sk = 0 means that k-th target is not assigned (Yk = 1
or Yk = 0)

• Main goal: build a model using training data which
predicts Y using X .
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Positive unlabelled multi-label classification

• Training data consists of pairs (x (i), s(i)) corresponding to
(X ,S).

• We assume so-called single data scenario:

• There is some unknown distribution P(Y ,X ,S) such that
(x (i), y (i), s(i)), i = 1, . . . , n is i.i.d. sample drawn from it.

• Only data (x (i), s(i)) is observed.
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Positive unlabelled multi-label classification

Important quantities:

• Label frequency for k-th target variable:
ck = P(Sk = 1|Yk = 1).

• Label frequency is related to class prior:

ck = P(Sk = 1|Yk = 1) =
P(Sk = 1,Yk = 1)

P(Yk = 1)
=

P(Sk = 1)
P(Yk = 1)

.

• It is easy to estimate P(Sk = 1).

• Thus, it is easy to estimate accurately ck , when class prior
πk = P(Yk = 1) is known.
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Classifier chains in multi-label classification 1 2

• Chain rule: P(Y1, . . . ,YK |X) = P(Y1|X)
∏K

k=2 P(Yk |X,Y1, . . . ,Yk−1).
• Classifier chains (CC), chain of K models:

Y1 ← X1, . . . ,Xp

Y2 ← X1, . . . ,Xp,Y1

Y3 ← X1, . . . ,Xp,Y1,Y2
...
YK ← X1, . . . ,Xp,Y1, . . . ,YK−1

• PROBLEM: In the case of PU data, we do not observe Y1, . . . ,YK

directly.

1J. Read et. al., Classifier chains for multi-label classification, Machine
Learning, 2011.

2J. Read et. al., Classifier Chains: A Review and Perspectives, J. Artif. Int.
Res., 2020.

How to learn classifier chains using positive-unlabelled multi-label data? Paweł Teisseyre



Method 1: Naive classifier chains

• Classifier chains (CC), chain of K models:

S1 ← X1, . . . ,Xp

S2 ← X1, . . . ,Xp, S1
S3 ← X1, . . . ,Xp, S1,S2
...
SK ← X1, . . . ,Xp, S1, . . . , SK−1

PROBLEM:

• We do not approximate conditional probabilities corresponding to the true
target variables P(Sk = 1|X, S1, . . . , Sk−1) 6= P(Yk = 1|X,Y1, . . . ,Yk−1).

• In particular, we have:

P(S1 = 1|X ) = P(S1 = 1|X ,Y1 = 1)︸ ︷︷ ︸
≤1

P(Y1 = 1|X ) ≤ P(Y1 = 1|X ).
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Estimated posterior probabilities
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Rysunek: Smoothed histograms of estimated posterior probabilities for the first
target in the chain, for c1 = P(S1 = 1|Y1 = 1) = 0.3.

In naive method (CC), estimated posterior probabilities are shrinked towards 0.
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PU Multi-label classification

Selected Completely at Random (SCAR) assumption

For each k = 1, . . . ,K

P(Sk = 1|X,Yk = 1,YA−k
) = P(Sk = 1|Yk = 1),

for any subset A−k ⊂ {1, . . . ,K} \ {k}.

Fact
Under SCAR assumption we have, for any subset
A−k ⊂ {1, . . . ,K} \ {k}

P(Yk = 1|X,YA−k
) = c−1

k P(Sk = 1|X,YA−k
).
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Method 2: Classifier chains for PU data (CCPU)

Input: X , S , prior probabilities π1, . . . , πk .

1 Estimate ck using equation ck = P(Sk = 1)/πk .

2 In k-th step:

1 Fit model Sk ← X, Ŷ1, . . . , Ŷk−1 to estimate
P(Sk = 1|X,Y1, . . . ,Yk−1).

2 Estimate P(Yk = 1|X,Y1, . . . ,Yk−1) using equation
P(Yk = 1|X,Y1, . . . ,Yk−1) = c−1

k P(Sk = 1|X,Y1, . . . ,Yk−1).

3 Make prediction of Yk , denoted as Ŷk , using estimate of
P(Yk = 1|X,Y1, . . . ,Yk−1).
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Method 3: Classifier chains for PU data (CCPUW)

The risk associated with k-th classifier gk in the chain:

R(gk) = EZk ,Yk
L(gk(Zk),Yk) =

αkEZk |Yk=1L
+(gk(Zk)) + (1− αk)EZk |Yk=0L

−(gk(Zk)).

where:

• Zk = (X,Y1, . . . ,Yk−1)

• αk = P(Yk = 1) (class prior for k-th target)

• L+ and L− are are losses for positive and negative examples,
respectively.
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Method 3: Classifier chains for PU data (CCPUW)

Theorem
Let αk = P(Yk = 1) and ck = P(Sk = 1|Yk = 1) be the label
frequency for k-th label. The following equality holds

R(gk) = ckαkEZk |Sk=1

[
1
ck

L+(gk(Zk)) + (1− 1
ck

)L−(gk(Zk))

]
+(1− ckαk)EZk |Sk=0L

−(gk(Zk))

• The optimal classifier for k-th target is defined as
g∗k := argmingk R̂(gk).
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Method 3: Classifier chains for PU data (CCPUW)

Input: X , S , prior probabilities π1, . . . , πk .

1 Estimate ck using equation ck = P(Sk = 1)/πk .

2 First step:

1 Fit classifier g∗
1 to estimate P(Yk = 1|X).

2 Make prediction of Y1, denoted as Ŷ1.

3 In the k-th step:

1 Fit classifier g∗
k using X, Ŷ1, . . . , Ŷk−1 as features to estimate

P(Yk = 1|X,Y1, . . . ,Yk−1).

2 Make prediction of Yk , denoted as Ŷk .

How to learn classifier chains using positive-unlabelled multi-label data? Paweł Teisseyre



Experiments

Datasets:

1 We created PU datasets from the original completely labelled datasets in
the following way.

2 For each target variable, the positive examples (wrt to this target) are
selected to be labelled with label frequency c, where c is treated as a
parameter which varies in the experiments.

Methods:

1 Oracle method: CC ORACLE

2 Naive methods: CC

3 Proposed methods: CCPU, CCPUW.

4 Corresponding Binary Relevance (BR) methods: BR ORACLE, BR,
BRPU, BRPUW
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How prediction accuracy depends on c?
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Results of Friedman and pairwise tests
F measure, c=0.5

Friedman pv<0.001

Mean ranks
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How much we lose compared to the optimal method?
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How much we lose compared to the optimal method?
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Error propagation in classifier chains
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Error propagation in classifier chains
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Conclusions
• PU multi-label problem is challenging (dependencies between

observed target variables may be much weaker than between
original ones).

• Building classifier chains for PU multi-label is also challenging
(noisy target variables and noisy features).

• Naive method works poorly.

• The performance of the considered method deteriorates for
small label frequency.

• The proposed methods work significantly better than naive
method, although they are still worse than ORACLE methods,
especially for small c .

• The differences between CC-based methods and BR-based
methods are not very pronounced.
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