TCL

的过去我教

<u>authors:</u>

Łukasz Treszczotko

Maciej Smyl

TCL RESEARCH EU, 05 NOVEMBER 2022

TCL Research EU

Key Facts

- TCL is one of the largest consumer electronics producers in the world
- ✓ 2nd largest TV producer in the world
- ✓ 35 R&D centers around the world
- ✓ Operates in 160+ countries
- ✓ Over 75 000 employees
- ✔ TCL Research EU in Warsaw since 2018

AutoML Team

- Neural Architecture Search
- ✓ Automated model compression
- ✓ and more…

- Optimize models for on-device deployments (smartphones, TVs, ...)
- ✔ Mobile AI challenges on an everyday basis

Optimization Ctrl

 Creating internal TCL tools for automated ML

TCL

Efficient deep neural networks - more challenging than it seems

TCL

towards efficient dnn models

Mediatek NPU, Top1 ImageNet Accuracy vs latency

	MobileNetV2 1.0	EfficientNet Lite B0	TCLV2M8
Flops	609 M	777 M	1.1 G
Params	3.5 M	4.6 M	14.2 M
Latency	13 ms	12.1	8.2 ms
ImageNet Top1 Accuracy	72.2 %	75.1 %	76.1 %

Simplified Unet Architecture For Fast Depth Estimation

TCL

fast and accurate

~	Team	Author	Framework	Model Size, MB	si-RMSE↓	RMSE↓	LOG10↓	REL↓	Runtime, ms \downarrow	Final Score	
	TCL	TCL	TensorFlow	2.9	0.2773	3.47	0.1103	0.2997	46	298	200/
	AIIA HIT	Zhenyu Li	PyTorch / TensorFlow	1.5	0.311	3.79	0.1241	0.3427	37	232	↓ 30 /0
	MiAIgo	ChaoMI	PyTorch / TensorFlow	1.0	0.299	3.89	0.1349	0.3807	54	188	
	Tencent GY-Lab	Parkzyzhang	PyTorch / TensorFlow	3.4	0.303	3.8	0.1899	0.3014	68	141	
	Tencent GY-Lab [*]	Parkzyzhang	PyTorch / TensorFlow	3.4	0.2836	3.56	0.1121	0.2690	103	122	
	SmartLab	RocheL	TensorFlow	7.1	0.3296	4.06	0.1378	0.3662	65	102	
	JMU-CVLab	mvc	PyTorch / TensorFlow	3.5	0.3498	4.46	0.1402	0.3404	139	36	
	ICL	Byung Hyun Lee	PyTorch / TensorFlow	5.9	0.338	6.73	0.3323	0.5070	142	42	

Monocular Depth Estimation Challenge: intro

Hardware-awareness, channel pruning and expert knowledge

- Optimize the trade-off between latency and quality
- The quality of the model was given by scale-invariant RMSE metric
- Latency was measured on Raspberry Pi 4 platform
- The training data was provided by the organizers. It constituted of around 7.5K pairs of 480x640 RGB / depth-map pairs.

Monocular Depth Estimation Challenge: our approach

TCL

Hardware-awareness, channel pruning and expert knowledge

Set up the device for latency measurement as quickly as possible

Iterate as much as possible

- try out different backbone models
- try out different feature fusion layers
- measure the latency before training to quickly remove architectures that are obviously too large (no matter their quality)

Once we have a trained model, **run automated channel pruning to compress it and add reparametrization blocks** to enable more expressive training of a really small model.

Monocular Depth Estimation Challenge: our approach - architecture.

Hardware-awareness, channel pruning and expert knowledge

The final architecture was rather simple (it must have been given the brutal latency penalty). We used **MobileNetV3 backbone** (after downsampling from 480x640 to 128x160) and a simple feature fusion based on **FPN**.

At some point we even managed to squeeze in a small vision transformer block into feature fusion which was almost as good as FPNet-like fusion, but for final submission we used FPNet fusion.

Monocular Depth Estimation Challenge: model compression.

Hardware-awareness, channel pruning and expert knowledge

Once the model was trained we run an **internally developed channel pruning algorithm** to make the model even smaller (about 40% FLOPs reduction seemed to be optimal as far as the final score was concerned).

Our method:

- → works during training, and optimizes jointly the accuracy and the model size
- → learns channel importance directly from feature maps
- → automatically detects the interdependent blocks of channels
- → offers device-aware pruning modes that can be adjusted to specific hardware platforms (e.g. removing groups of N channels, where N can be 8/16/32/..., depending on hardware)

Just to demonstrate how small the actual model was we can say that given the same input resolution 480x640, MobileNetV2 was > 20 times larger.

Quantized Image Super Resolution Challenge

TCL

Designing efficient yet powerful model

Team	Author	Framework	Model Size, KB	PSNR↑	SSIM↑	Δ PSNR Drop,	Runtin	ne, ms \downarrow	Speed-Up	Final Score
				INT8	INT8 Model FP32 \rightarrow INT8		CPU	NPU	THE COMPANY OF CALMAN	
Z6	ganzoo	Keras / TensorFlow	67	30.03	0.8738	0.06	809	19.2	42.1	22.22
TCLResearchEurope	maciejos_s	Keras / TensorFlow	53	29.88	0.8705	0.13	824	15.9	51.8	21.84
ECNUSR	CCjiahao	Keras /TensorFlow	50	29.82	0.8697	0.10	553	15.1	36.6	21.08
LCVG	zion	Keras / TensorFlow	48	29.76	0.8675	0.11	787	15.0	52.5	19.59
BOE-IOT-AIBD	NBCS	Keras / TensorFlow	57	29.80	0.8675	0.19	877	16.1	54.5	19.27
NJUST	kkkls	TensorFlow	57	29.76	0.8676	0.16	767	15.8	48.5	18.56
Antins_cv	fz	Keras / TensorFlow	38	29.58	0.8609	n.a.	543	15.2	35.7	15.02
GenMedia Group	stevek	Keras / TensorFlow	56	29.90	0.8704	0.11	855	25.6	33.4	13.91
Vccip	Huaen	PyTorch / TensorFlow	67	29.98	0.8729	n.a.	1042	30.5	34.2	13.07
MegSR	balabala	Keras / TensorFlow	65	29.94	0.8704	n.a.	965	29.8	32.4	12.65
DoubleZ	gideon	Keras / TensorFlow	63	29.94	0.8712	0.1	990	30.1	32.9	12.54
Jeremy Kwon	alan_jaeger	TensorFlow	48	29.80	0.8691	0.09	782	25.7	30.4	12.09
Lab216	sissie	TensorFlow	78	29.94	0.8728	0	1110	31.8	34.9	11.85
TOVB	jklovezhang	Keras / TensorFlow	56	30.01	0.8740	0.04	950	43.3	21.9	9.60
ABPN [19]	baseline		53	29.87	0.8686	n.a.	998	36.9	27	9.27
Samsung Research	xiaozhazha	TensorFlow	57	29.95	0.8728	0.1	941	43.2	21.8	8.84
Rtsisr2022	rtsisr	Keras / TensorFlow	68	30.00	0.8729	0.09	977	46.4	21.1	8.83
Aselsan Research	deepernewbie	Keras / TensorFlow	30	29.67	0.8651	n.a.	598	30.2	19.8	8.59
Klab_SR	FykAikawa	TensorFlow	39	29.88	0.8700	n.a.	850	43.1	19.7	8.05
TCL Research HK	mrblue	Keras / TensorFlow	121	30.10	0.8751	0.04	1772	60.2	29.4	7.81
RepGSR	yilitiaotiaotang	Keras / TensorFlow	90	30.06	0.8739	0.02	1679	61.3	27.4	7.26
ICL	smhong	Keras / TensorFlow	55	29.76	0.8641	0.23	949	43.2	22.0	6.79
Just A try	kia350	Keras / TensorFlow	39	29.75	0.8671	n.a.	766	42.9	17.9	6.76
Bilibili AI	Sail	Keras / TensorFlow	75	29.99	0.8729	n.a.	1075	68.2	15.8	5.92
MobileSR	garasgaras	TensorFlow	82	30.02	0.8735	0.07	1057	72.4	14.6	5.82
A+ regression [72]	Baseline			29.32	0.8520	-		-	-	-
Bicubic Upscaling	Baseline			28.26	0.8277	2	120	-	_	-

60 fps, Full HD upsampling

Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report, *to be published*

Quantized Image Super Resolution Challenge

Designing efficient yet powerful model

TCL

3x bicubic upsample

Ground Truth

Quantized Image Super Resolution Challenge

Designing efficient yet powerful model

Platform: Synaptics VS680

Goal: efficient and high quality 3x upsampling

How to design efficient and powerful DNN model for **NPU**?

Our solution:

- prunable re-parametrization
- purely convolutional inference graph
- Quantization-aware training for nearly lossless int8 quantization

Structural Re-paramerization

Designing efficient yet powerful model

Convolution linearity:

$$\boldsymbol{I} \circledast (p\boldsymbol{F}) = p(\boldsymbol{I} \circledast \boldsymbol{F}), \forall p \in \mathbb{R},$$
$$\boldsymbol{I} \circledast \boldsymbol{F}^{(1)} + \boldsymbol{I} \circledast \boldsymbol{F}^{(2)} = \boldsymbol{I} \circledast (\boldsymbol{F}^{(1)} + \boldsymbol{F}^{(2)})$$

Sequence of convolutions can be analytically collapsed into **single convolution** &

Skip connection can be viewed as a **single convolution with identity kernel**

Complex training graph -> Plain inference structure

(Almost) free performance boost!

Diverse Branch Block: Building a Convolution as an Inception-like Unit, Xiaohan Ding

 Skip connection:
 0
 0
 0

 0
 1
 0
 0
 0

TCL

Structural Re-paramerization

Designing efficient yet powerful model

Re-parametrization module - channels pruning

Shareable (over convolutions sequence and skip connection branches) pruning mask

Quantization

Designing efficient yet powerful model

TCL

Quantization in expanded space

During **forward pass**:

- 1. re-parametrize the CLB module weights into single convolutional kernel
- 2. perform quantization and de-quantization of resulting kernel

CLB - forward pass scheme

- 1. Growing demand on on-device AI application (often real-time) results in increased interest in efficient DNN architectures.
- 2. In order to design powerful and fast model, target device runtime measurements should be employed.
- 3. Best results can be obtained with automated NAS methods, but manual tweaks can also work reasonably well.
- 4. *More = better* don't be afraid to incorporate several optimization method simultaneously.

Mobile Al Challenges 2022 - TCL Research EU Team

Łukasz Treszczotko (DE task leader) (3

Maciej Smyl (SR task leader)

Xin Chang

Piotr Książek

Paweł Kubik

Michał Łopuszyński

Tomasz Latkowski

Maciej Pióro

Rafał Rudnicki

Michał Sokólski

Yujie Ma

Michał Kudelski (managerial support, TCL AutoML Team Leader)

www.tcl.com