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measures: faithfulness
software: Quantus

benchmarks: XAl-Bench
leaderboards: OpenXAl

(1) Evaluating model
explanations is challenging.

HCI & user studies with humans
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We explain black-box machine learning for...

(1) Validation & debugging <=
(2) Scientific insights

(3) Model improvement
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| generation explanations Il generation explanations
black-box model

(single aspect (interactive explanatory
model explanation) model analysis)

H. Baniecki, D. Parzych, P. Biecek. The Grammar of Interactive

Explanatory Model Analysis. arXiv preprint, 2022.
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User study: a 45-minute questionnaire

Goal: see if an interactive and seguential analysis of a model
brings value to explaining black-box machine learning

Research question: Do juxtaposing complementary
explanations increase the usefulness of explanations?

Usefulness: accuracy and confidence of human decision-making

Target group: model developers, not domain experts

MI|RESEARCH
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A case study of Acute Kidney Injury (AKI) prediction

H33MER

The model predicts a probability of AKI occurance during

the patient's hospitalization due to COVID-19

Classification performance measures:

recall: 0.866 | precision: 0.644 | f1: 0.739 | accuracy: 0.896 | auc: 0.946

Classification threshold: 0.5

Frequency of AKI among patients: about 18%
(the fraction of class 1)
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Is the class predicted by the model for this patient accurate?
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46 respondents -> 31 full responses
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Is the class predicted by the model for this patient accurate? Correct answer: NO
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Accuracy: frequency of proper answers given by 30 respondents

Its variance: accuracy aggregated over 12 patient cases

Hypothesis (number of cases = 12) Q| m——p () AQ30 P-values
Accuracy increases between (3 and Q 5224993  65.84240 13.64114 | 0.002; 0.004
Confidence increases between O3 and Qg 2314137 3534156 11224918 | 0.004;0.018
“I don’t know” decreases between Q3 and Q| 12.84938 52450 —7.5478 | 0.007;0.007

Table 4 Aggregated results from the user study validate our hypotheses. We report mean..z; across the
participants’ performance in 12 patient cases, and measure their difference between Q3 and Q) marked as
IAQ;gl. We validate each hypothesis with the t-test and Wilcoxon signed-rank test, hence two p-values.
T

here is a significant increase in accuracy and confidence between the sequential questions. Additionally,
the frequency of ambiguous answers decreases.

Baniecki et al. The Grammar of Interactive Explanatory Model Analysis. arXiv preprint, 2022.



The Grammar of Interactive Explanatory Model Analysis 23

Qy4: Which of the following aspects had the greatest impact on your decision making
in the presented patient case?

Answer Frequency
Break-down explanation (1st screen) 16.7%
Ceteris Paribus “What-if?”” explanation (2nd screen) 27.5% 1
Shapley Values explanation or/and an additional Ceteris Paribus 35.3%
“What-if?” explanation (3rd screen)

I Comparison of the local explanations with the global explanations 19.2% I
My answer was random, I ran out of information to make a decision 0.5%
Other (three descriptive answers in total: a Permutational Importance 0.8%

explanation, both Ceteris Paribus explanations, a high residual value)

Table 5 Frequency of answers for Q4 averaged across 12 cases times 30 participants.

MI|RESEARCH
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5.2 Qualitative analysis

At the end of the user study, we asked our participants to share their thoughts on the
user study. In the first question, we asked if they saw any positive aspects of present-
ing a greater number of explanations to the model. This optional question was an-
swered by 19 participants, who most often pointed to the following positive aspects:
the greater number of the presented explanations, the more information they obtain
(n = 18; 95%), which allows a better understanding of the model (n = 13; 68%), and
ultimately increases the certainty of the right decision making (n = 8; 42%) as well
as minimizes the risk of making a mistake (n = 2; 11%). Additionally, we asked if the
participants identified any potential problems, limitations, threats related to present-
ing additional model explanations? In 21 people answering this question, the most
Equently given answers were: too many explanations require more analysis, which
generates the risk of cognitive load (n = 15; 71%), and which may, in consequence,
distract the focus on the most important factors (n = 7; 33%). Therefore, some par-
ticipants highlighted the number of additional explanations as a potential limitation
(n = 10; 48%). Moreover, the participants noticed that the explanations must be ac-
companied by clear instructions for a better understanding of the presented data, be-
cause otherwise they do not fulfill their function (n = 6; 29%), and may even introduce

H&_MER additional uncertainty to the assessment of the model (n = 4; 19%). RESEARCH
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(1) Evaluating explanations with human subjects is challenging.

(2) Our user study indicates that an interactive sequential
analysis of a model has a potential to increase the accuracy
and confidence of human decision making.
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