One-class classification approach to variational learning from biased Positive Unlabeled data

Jan Mielniczuk

Institute of Computer Science, Polish Academy of Sciences

Faculty of Mathematics and Information Sciences, Warsaw University of Technology

Based on joint research with A. Wawrzeńczyk

・ロト ・回ト ・ヨト ・ヨト

- Introduction: biased Positive Unlabeled data
- Autoencoders
 VaDE (Jiang et al 2017)
 VAE-PU (Na et al. 2020)

3 Our contribution: extension of VAE-PU: VAE-PU + OCC

ヘロト 人間ト ヘヨト ヘヨト

Table: Texting while driving survey - obtained data

Age	Gender	Education	Survey answer	Texts
20	male	higher	no	?
50	female	primary	yes	yes
35	female	secondary	no	?
15	male	primary	no	?
70	male	secondary	no	?
30	female	primary	yes	yes

Many examples in medicine, biology, NLP (text annotation) etc.

イロト イポト イヨト イヨト

Instead of (X, Y) (Y = 1, -1, positve, negative) we observe (X, O) (O = 1, 0 (labeled, unlabeled) **Positive-Unlabeled (PU) learning**:

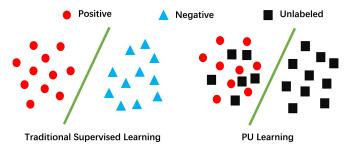
- Labeled and unlabeled sample (*O* label vector),
- All labeled observations are positive,
- Unlabeled observations can be positive or negative.

We want to to build a classifier \hat{Y} of true class indicator Y and estimate posterior probability

$$y(x) := P(Y = 1|x)$$

・ロト ・回ト ・ヨト ・ヨト

Visualization of traditional classification and classification from PU data $^{\rm 1}$



¹Gong et, al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. 📱 🔊 🤉

Propensity score:

$$e(x) := P(O=1|Y=1,x)$$

Selected Completely At Random (SCAR) assumption:

$$e(x) = P(O = 1 | Y = 1, x) = P(O = 1 | Y = 1) = const.$$

c = P(O = 1 | Y = 1) is the label frequency.

Selected At Random (SAR) assumption:

$$e(x) = P(O = 1 | Y = 1, \mathbf{x})$$

Weaker SAR (Selected At Random) assumption can be used instead:

$$e(x) = P(O = 1|Y = 1, x)$$

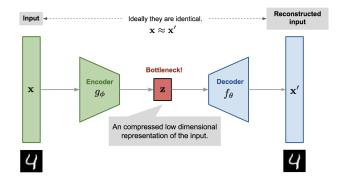
Propensity score is a function of object attributes (biased PU data)!

Current advances in biased PU modeling:

- EM Bekker, Davis (2017),
- **VAE-PU** Na et al (2020),
- LBE Gong et al (2021),
- JOINT, TWO MODELS Furmańczyk, JM, Rejchel, Teisseyre (2021),

ヘロト ヘ回ト ヘヨト ヘヨト

Autoencoders , Variational Auto-Encoders – idea

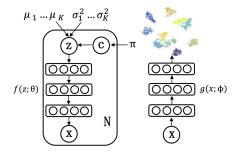


Latent space of traditional autoencoders is not regularised. Variational Auto-Encoders: introduction of variational distribution q(z, x) and maximisation of Evidence Lower BOund (ELBO).

イロト 不同 トイヨト イヨト

Variational Deep Embedding (VaDE) (Jiang et al (2017)).

Idea: Model latent variable *z* as the mixture of gaussians.



イロト イヨト イヨト イヨト

Generative process:

- Choose a cluster $c \sim Cat(\pi)$
- Choose a latent vector $z \sim \mathcal{N}(\mu_c, \sigma_c^2 I)$
- Generation of x (real number case):
 - Compute μ_x and σ_x^2

$$[\mu_x, \log \sigma_x^2] = f(z; \theta)$$

• Choose an observation $x \sim \mathcal{N}(\mu_x, \sigma_x^2 I)$

э

イロト イ団ト イヨト イヨトー

Generative process:

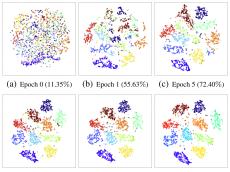
- Choose a cluster $c \sim Cat(\pi)$
- Choose a latent vector $z \sim \mathcal{N}(\mu_c, \sigma_c^2 I)$
- Generation of x (real number case):
 - Compute μ_x and σ_x^2

$$[\mu_x, \log \sigma_x^2] = f(z; \theta)$$

• Choose an observation $x \sim \mathcal{N}(\mu_x, \sigma_x^2 I)$

Variational posterior $q(z, c|x) = q(z|x)q(c|x) \Rightarrow$ ELBO bound.

Results for MNIST



(d) Epoch 50 (84.59%) (e) Epoch 120 (90.76%) (f) Epoch End (94.46%)

Figure: Colors: ground truth classes, clusters are given by latent encoding, t-SNE representation $^{\rm 2}$

イロト イヨト イヨト イヨト

²Jiang et al., IJCAI'2017

 $y \in \{-1, 1\}, g(x)$ - target classifying function (e.g. neural network), $l(\cdot)$ - any loss function (eg. sigmoid), o - label vector. A general PU risk function:

$$\begin{aligned} &R_{PU}(g) = p(y = +1, o = 1) \mathbb{E}_{x \sim p_{pl}(x)}[l(g(x))] \\ &+ p(y = +1, o = 0) \mathbb{E}_{x \sim p_{pu}(x)}[l(g(x)) - l(-g(x))] \\ &+ p(o = 0) \mathbb{E}_{x \sim p_u(x)}[l(-g(x))] \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > .

 $y \in \{-1, 1\}, g(x)$ - target classifying function (e.g. neural network), $l(\cdot)$ - any loss function (eg. sigmoid), o - label vector. A general PU risk function:

$$\begin{aligned} &R_{PU}(g) = p(y = +1, o = 1) \mathbb{E}_{x \sim p_{pl}(x)}[I(g(x))] \\ &+ p(y = +1, o = 0) \mathbb{E}_{x \sim p_{pu}(x)}[I(g(x)) - I(-g(x))] \\ &+ p(o = 0) \mathbb{E}_{x \sim p_u(x)}[I(-g(x))] \end{aligned}$$

Notation

$$\label{eq:product} \begin{split} \pi &= P(Y=1) \text{ assumed known} \\ \pi_{PL} &= P(Y=1,O=1), \ \pi_{PU} = P(Y=1,O=0) \end{split}$$

イロト 不得下 イヨト イヨト

Empirical risk

Empirical risk function:

$$\begin{split} \hat{R}_{PU}(g) &= \frac{\pi_{PL}}{|\chi_{PL}|} \sum_{x^{(pl)} \in \chi_{PL}} I(g(x^{(pl)})) \\ &+ \frac{\pi_{PU}}{|\tilde{\chi}_{PU}|} \sum_{\tilde{x}^{(pu)} \in \tilde{\chi}_{PU}} I(g(\tilde{x}^{(pu)})) \\ &+ \max\left\{ 0, -\frac{\pi_{PU}}{|\tilde{\chi}_{PU}|} \sum_{\tilde{x}^{(pu)} \in \tilde{\chi}_{PU}} I(-g(\tilde{x}^{(pu)})) + \frac{\pi_{U}}{|\chi_{U}|} \sum_{x^{(u)} \in \chi_{U}} I(-g(x^{(u)})) \right\} \end{split}$$

Problem: We need to estimate the distribution of PU cases (due to terms with $\tilde{\chi}_{PU}$). **Idea:** Use model similar to VaDE to generate PU pseudo-observations. Instead of one latent representation *z*, we use **two latent vectors**:

- *h_o* encodes **observation** status (labeled,unlabeled),
- h_y encodes **class** information (positive, negative).

Motivation: positive cases, regardless of what is observed, share the same h_y .

Generative process:

- Choose cluster $c \sim \text{Bern}(\eta)$
- Generate latent class vector $h_y | c \sim \mathcal{N}(\mu_c, \sigma_c^2 I)$
- \blacksquare Generate latent observation vector $h_o \sim \mathcal{N}(0, I)$
- Generate sample *x*:

$$[\mu_x, \log \sigma_x^2] = f(h_y, h_o; \theta)$$

• $x|h_y, h_o \sim \mathcal{N}(\mu_x, \sigma_x^2 I)$

• Generate observation status $o|h_o \sim \text{Bern}(f_o(h_o))$

回下 イヨト イヨト

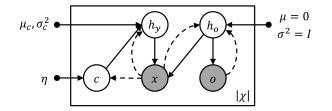


Figure 2: The graphical model of the VAE-PU. The solid lines denote the generative model p and the dashed lines denote the variational approximation q to p. The gray and white circles denote the observed variables and latent variables, respectively. $|\chi|$ is the number of entire data instances.

Joint probability can be factorized:

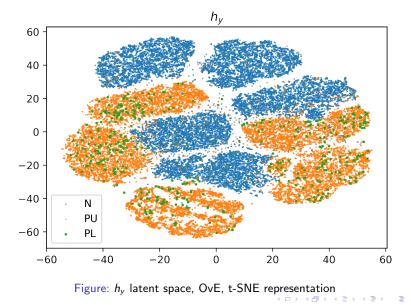
$$p(h_y, h_o, c, x, o) = p(c)p(h_y|c)p(h_o)p(o|h_o)p(x|h_y, h_o)$$

 $q(h_y, h_o, c|x, o) = q(h_y|x)q(h_o|x, o)q(c|x) \Rightarrow \text{ELBO bound}$

э

《曰》《曰》 《曰》 《曰》

h_y for Odd v Even (MNIST)



- In order to generate PU pseudo-examples:
 - **1** Match positive and unlabeled samples (eg. nearest h_y representation),
 - **2** Extract label information from positive instance $(h_y^{(pl)})$ and observation status from unlabeled sample $(h_o^{(u)})$,
 - **3** Concatenate $h_y^{(pl)}$ and $h_o^{(u)}$,
 - 4 Decode the latent representation.
 - **5** Constructed examples *mimic* elements of χ_{PU}

ヘロト ヘヨト ヘヨト

Generated examples

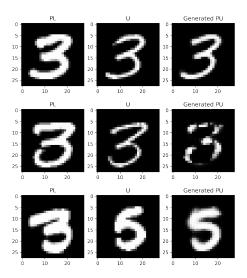


Table: Mean digit boldness

Dataset	Boldness
PL	0.2475
True PU	0.1397
U	0.1346
Generated PU	0.1451

・ロト ・日 ・ ・ 回

▶ < ∃ >

One-class classification

Idea: instead of using artificially constructed $\tilde{\chi}_{PU}$ in minimisation of empirical risk we try to extract PU examples *from U* using **one-class** classification methods. Having $\hat{\chi}_{PU} \subset \chi_U$ is advantageous.

くロ とくぼ とくほ とく ひょう

One-class classification

Idea: instead of using artificially constructed $\tilde{\chi}_{PU}$ in minimisation of empirical risk we try to extract PU examples from U using **one-class** classification methods. Having $\hat{\chi}_{PU} \subset \chi_U$ is advantageous. **One-class classification (OCC, aka ODD aka Anomaly Detection)**:

- Training dataset $\mathcal{D} = \{X_i\}_{i=1}^n$ iid. observations from unknown distribution P_X (samples drawn from P_X are **inliers**),
- Goal: test which among new set D^{test} = {X_{n+i}}ⁿ_{i=1} are outliers, that is they are not drawn from the same distribution P_X.

・ロン ・四 と ・ 回 と ・ 日 と

One-class classification

Idea: instead of using artificially constructed $\tilde{\chi}_{PU}$ in minimisation of empirical risk we try to extract PU examples from U using **one-class** classification methods. Having $\hat{\chi}_{PU} \subset \chi_U$ is advantageous. **One-class classification (OCC, aka ODD aka Anomaly Detection)**:

- Training dataset D = {X_i}ⁿ_{i=1} iid. observations from unknown distribution P_X (samples drawn from P_X are **inliers**),
- Goal: test which among new set $\mathcal{D}^{test} = \{X_{n+i}\}_{i=1}^{n_{test}}$ are **outliers**, that is they are not drawn from the same distribution P_X .

Multiple known methods, eg.:

- One-Class SVM (Schölkopf et al 2001,
- Isolation Forest (Li et al.2008),
- ECOD (Liu et al. 2022)
- A^3 : Activation Anomaly Analysis, Sperl et al. 2021)

Algorithm VAE-PU +OCC (simplified)

Application in our setting: $\tilde{\chi}_{PU}$ are treated as inliers, outliers $\chi_{NU} \subseteq \chi_U$.

э

イロト イヨト イヨト イヨト

Application in our setting: $\tilde{\chi}_{PU}$ are treated as inliers, outliers $\chi_{NU} \subseteq \chi_U$.

Algorithm^a

- Given classifying function g train VAE-PU model optimise objective function to obtain pseudo-sample *χ̃_{PU}*;
- Given $\tilde{\chi}_{PU}$ perform OCC to extract inliers $\hat{\chi}_{PU} \subseteq \chi_U$;
- Perform minimisation of empirical risk R(g) with $\hat{\chi}_{PU}$ replacing $\tilde{\chi}_{PU}$;
- Perform the next cycle until F1 measure levels off.

^ahttps://github.com/adamw00000/VAE-PU-OCC

・ロト ・回 ト ・ヨト ・ヨト

Datasets:

- MNIST: 3v5, OvE,
- CIFAR: CarTruck, MachineAnimal,
- STL (MachineAnimal),
- Gas concentrations.

Alternative methods:

- **Baseline: VAE-PU** (Na et al. 2020),
- **SAR-EM** (Bekker, Davis 2019),

・ロト ・同ト ・ヨト ・ヨト

LBE (Gong et al., 2021).

Comparisons in the original paper:

- nnPU,
- ∎ uPU,
- PUbN/N,
- GenPU,
- PAN,
- PUSB.

 MNIST: two different tasks: 3 versus 5 (3v5) and Odds versus Evens (OvE) CIFAR-10, STL-10: Machine versus Animal Gas Concentrations: Ethanol versus Amonia

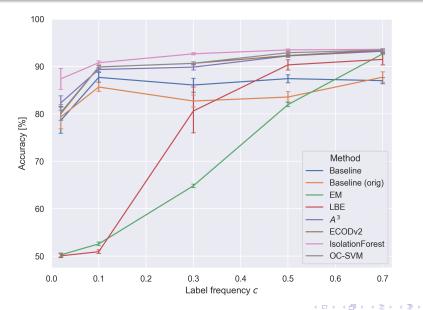
・ロト ・ 同ト ・ ヨト ・ ヨト

- MNIST: two different tasks: 3 versus 5 (3v5) and Odds versus Evens (OvE) CIFAR-10, STL-10: Machine versus Animal Gas Concentrations: Ethanol versus Amonia
- Data labeled artificially according to various labeling scenarios: MNIST data: proportional to boldness, CIFAR-10, STL-10: proportional to 'redness'.

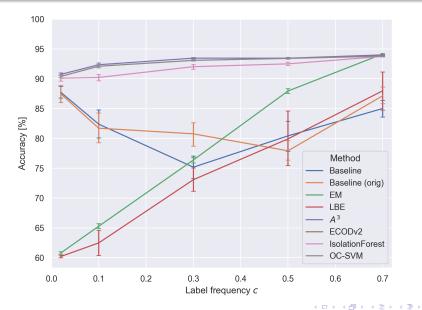
Number of examples to be labeled is consistent with assumed label frequency c = P(S = 1 | Y = 1).

《曰》《聞》《臣》《臣》

Results: CIFAR CarTruck

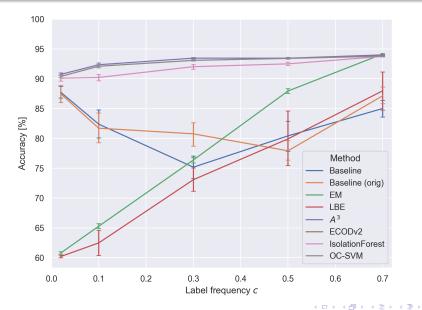


Results: CIFAR MachineAnimal



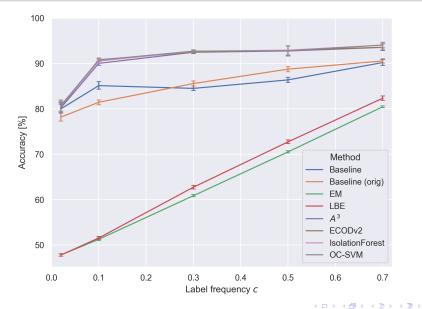
Jan Mielniczuk (ICS PAS, WUT)

Results: CIFAR MachineAnimal



Jan Mielniczuk (ICS PAS, WUT)

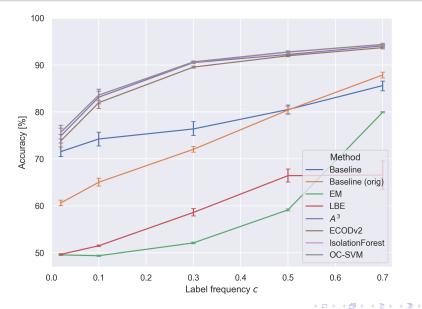
Results:MNIST 3v5



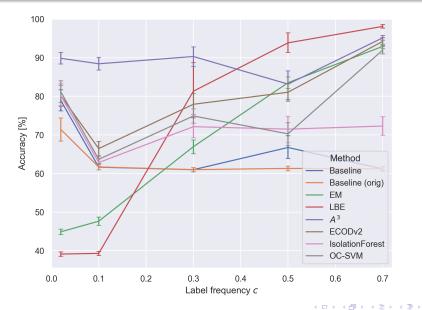
Jan Mielniczuk (ICS PAS, WUT)

æ

Results: MNIST OvE



Results: Gas Concentrations



Conclusions from experiments:

- OCC modification improved results significantly as compared to baseline VAE-PU model,
- *A*³ and *ECOD* variants perform **consistently the best** among OCC methods studied,
- EM and LBE methods **rarely** outperform OCC-enhanced model.
- EM and LBE methods work poorly for small labeling probability *c*.

・ロト ・回ト ・ヨト ・ヨト

- LBE:Gong, C. et al. Instance-Dependent Positive and Unlabeled Learning with Labeling Bias Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021
- VAE PU: Na, B. et al., Deep Generative Positive-Unlabeled Learning under Selection Bias, CIKM 2020
- **EM**: Bekker et al., Beyond the SCAR assumption for learning from positive and unlabeled data, ECML 2019
- VAE PU +OCC: Wawrzeńczyk, A. and JM, One-class classification approach to variational learning from biased positive unlabeled data, 2022, submitted
- **ECOD**: Li, Z. et al. ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions, IEEE Transaction on Knowledge and Data Engineeering, 2022

《曰》《曰》 《曰》 《曰》