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1 Introduction: biased Positive Unlabeled data

2 Autoencoders
VaDE (Jiang et al 2017)
VAE-PU (Na et al. 2020)

3 Our contribution: extension of VAE-PU: VAE-PU +OCC
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PU datasets: partial observability in action

Table: Texting while driving survey - obtained data

Age Gender Education Survey answer Texts
20 male higher no ?
50 female primary yes yes
35 female secondary no ?
15 male primary no ?
70 male secondary no ?
30 female primary yes yes

Many examples in medicine, biology, NLP (text annotation) etc.
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PU learning task

Instead of (X ,Y ) (Y = 1,−1, positve, negative) we observe (X ,O)
(O = 1, 0 (labeled, unlabeled)
Positive-Unlabeled (PU) learning:

Labeled and unlabeled sample (O - label vector),

All labeled observations are positive,

Unlabeled observations can be positive or negative.

We want to to build a classifier Ŷ of true class indicator Y and
estimate posterior probability

y(x) := P(Y = 1|x)
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Positive and unlabelled data

Visualization of traditional classification and classification from PU
data 1

1Gong et, al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
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Labeling assumptions

Propensity score:

e(x) := P(O = 1|Y = 1, x)

Selected Completely At Random (SCAR) assumption:

e(x) = P(O = 1|Y = 1, x) = P(O = 1|Y = 1) = const.

c = P(O = 1|Y = 1) is the label frequency.

Selected At Random (SAR) assumption:

e(x) = P(O = 1|Y = 1, x)
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Weaker SAR (Selected At Random) assumption can be used instead:

e(x) = P(O = 1|Y = 1, x)

Propensity score is a function of object attributes (biased PU data)!

Current advances in biased PU modeling:

EM Bekker, Davis (2017),

VAE-PU Na et al (2020),

LBE Gong et al (2021),

JOINT, TWO MODELS Furmańczyk, JM, Rejchel, Teisseyre
(2021),
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Autoencoders , Variational Auto-Encoders – idea

Latent space of traditional autoencoders is not regularised.
Variational Auto-Encoders: introduction of variational distribution
q(z , x) and maximisation of Evidence Lower BOund (ELBO).
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VaDE: idea

Variational Deep Embedding (VaDE) (Jiang et al (2017)).

Idea: Model latent variable z as the mixture of gaussians.
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Generative process:

Choose a cluster c ∼ Cat(π)

Choose a latent vector z ∼ N (µc , σ
2
c I )

Generation of x (real number case):
Compute µx and σ2

x

[µx , log σ
2
x ] = f (z ; θ)

Choose an observation x ∼ N (µx , σ
2
x I )

Variational posterior q(z , c |x) = q(z |x)q(c |x)⇒ ELBO bound.
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Results for MNIST

Figure: Colors: ground truth classes,clusters are given by latent encoding, t-SNE
representation 2

2Jiang et al., IJCAI’2017
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VAE-PU: empirical risk minimisation

y ∈ {−1, 1}, g(x) - target classifying function (e.g. neural network),
l(·) - any loss function (eg. sigmoid), o - label vector.
A general PU risk function:

RPU(g) = p(y = +1, o = 1)Ex∼ppl (x)[l(g(x))]

+ p(y = +1, o = 0)Ex∼ppu(x)[l(g(x))− l(−g(x))]

+ p(o = 0)Ex∼pu(x)[l(−g(x))]

Notation
π = P(Y = 1) assumed known

πPL = P(Y = 1,O = 1), πPU = P(Y = 1,O = 0)
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Empirical risk

Empirical risk function:

R̂PU(g) =
πPL
|χPL|

∑
x(pl)∈χPL

l(g(x (pl)))

+
πPU
|χ̃PU |

∑
x̃(pu)∈χ̃PU

l(g(x̃ (pu)))

+ max

0,− πPU
|χ̃PU |

∑
x̃(pu)∈χ̃PU

l(−g(x̃ (pu))) +
πU
|χU |

∑
x(u)∈χU

l(−g(x (u)))


Problem: We need to estimate the distribution of PU cases (due to
terms with χ̃PU).
Idea: Use model similar to VaDE to generate PU
pseudo-observations.
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Generative process

Instead of one latent representation z , we use two latent vectors:

ho - encodes observation status (labeled,unlabeled),

hy - encodes class information (positive, negative) .

Motivation: positive cases, regardless of what is observed, share the
same hy .

Generative process:

Choose cluster c ∼ Bern(η)

Generate latent class vector hy |c ∼ N (µc , σ
2
c I )

Generate latent observation vector ho ∼ N (0, I )

Generate sample x :
[µx , log σ

2
x ] = f (hy , ho ; θ)

x |hy , ho ∼ N (µx , σ
2
x I )

Generate observation status o|ho ∼ Bern(fo(ho))
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Joint probability can be factorized:

p(hy , ho , c , x , o) = p(c)p(hy |c)p(ho)p(o|ho)p(x |hy , ho)

q(hy , ho , c |x , o) = q(hy |x)q(ho |x , o)q(c |x)⇒ ELBO bound
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hy for Odd v Even (MNIST)

Figure: hy latent space, OvE, t-SNE representation
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Generation of artificial PU examples - crucial point !

In order to generate PU pseudo-examples:

1 Match positive and unlabeled samples (eg. nearest hy
representation),

2 Extract label information from positive instance (h
(pl)
y ) and

observation status from unlabeled sample (h
(u)
o ),

3 Concatenate h
(pl)
y and h

(u)
o ,

4 Decode the latent representation.

5 Constructed examples mimic elements of χPU
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Generated examples

Table: Mean digit boldness

Dataset Boldness
PL 0.2475

True PU 0.1397
U 0.1346

Generated PU 0.1451
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One-class classification

Idea: instead of using artificially constructed χ̃PU in minimisation of
empirical risk we try to extract PU examples from U using one-class
classification methods. Having χ̂PU ⊂ χU is advantageous.

One-class classification (OCC, aka ODD aka Anomaly
Detection):

Training dataset D = {Xi}ni=1 – iid. observations from unknown
distribution PX (samples drawn from PX are inliers),

Goal: test which among new set Dtest = {Xn+i}ntesti=1 are outliers,
that is they are not drawn from the same distribution PX .

Multiple known methods, eg.:

One-Class SVM (Schölkopf et al 2001,

Isolation Forest (Li et al.2008),

ECOD (Liu et al. 2022)

A3: Activation Anomaly Analysis, Sperl et al. 2021)
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Algorithm VAE-PU +OCC (simplified)

Application in our setting: χ̃PU are treated as inliers, outliers
χNU ⊆ χU .

Algorithma

Given classifying function g train VAE-PU model optimise
objective function to obtain pseudo-sample χ̃PU ;

Given χ̃PU perform OCC to extract inliers χ̂PU ⊆ χU ;

Perform minimisation of empirical risk R(g) with χ̂PU replacing
χ̃PU ;

Perform the next cycle until F1 measure levels off.

ahttps://github.com/adamw00000/VAE-PU-OCC
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Experimental settings

Datasets:

MNIST: 3v5, OvE,

CIFAR: CarTruck, MachineAnimal,

STL (MachineAnimal),

Gas concentrations.

Alternative methods:

Baseline: VAE-PU (Na et al.
2020),

SAR-EM (Bekker, Davis 2019),

LBE (Gong et al., 2021).

Comparisons in the original paper:

nnPU,

uPU,

PUbN/N,

GenPU,

PAN,

PUSB.
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Details of numerical experiments

MNIST: two different tasks: 3 versus 5 (3v5) and Odds versus Evens (OvE)
CIFAR-10, STL-10: Machine versus Animal
Gas Concentrations: Ethanol versus Amonia

Data labeled artificially according to various labeling scenarios:
MNIST data: proportional to boldness, CIFAR-10, STL-10: proportional to
’redness’.
Number of examples to be labeled is consistent with assumed label frequency
c = P(S = 1|Y = 1).

Jan Mielniczuk (ICS PAS, WUT) One-class classification approach to variational learning from biased Positive Unlabeled data
Based on joint research with A. Wawrzeńczyk 22
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Results:CIFAR CarTruck
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Results:CIFAR MachineAnimal
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Results:CIFAR MachineAnimal
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Results:MNIST 3v5
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Results:MNIST OvE
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Results:Gas Concentrations
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Summary: VAE-PU+OCC

Conclusions from experiments:

OCC modification improved results significantly as compared to baseline
VAE-PU model,

A3 and ECOD variants perform consistently the best among OCC methods
studied,

EM and LBE methods rarely outperform OCC-enhanced model.

EM and LBE methods work poorly for small labeling probability c .
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/ 30



References

1 LBE:Gong, C. et al. Instance-Dependent Positive and Unlabeled Learning
with Labeling Bias Estimation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021

2 VAE PU: Na, B. et al., Deep Generative Positive-Unlabeled Learning under
Selection Bias, CIKM 2020

3 EM: Bekker et al., Beyond the SCAR assumption for learning from positive
and unlabeled data, ECML 2019
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