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Named Entity Recognition

a”egro Search for anything search many | All categories (Nl seARCH
Parameters
Condition New
Invoice With VAT invoice
Sleeve Size Big boi
Manufacturer Some Company
Name Super Product Pro
Packaging Status original
Color multicolor, other
Description

Our product is the best of its kind. Its qualities are truly
extraordinary and mindblowing. It has 128 GB of RAM,
imagine that.

Also, it can't be forgotten that the Super Product makes
literally everyone happy on first sight. People tend to
dance in joy when they hold it in their hands. It's made
for all ages, but its effects vary between age groups.

Oh, and its catalogue number is BUY-M3-4S4P. Order
now!
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Why do we need uncertainty estimation?

The Super Product and
Product9000 are among the best.

\»

NER model
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Why do we need uncertainty estimation?

Model name: Super Product | 90%

The Super Product and Model name: Product9000 | 979
Product9000 are among the best.

g e T

NER model

_ ’ \

This really is a great product, Model name: great product | ??%
| like it a lot.

allegro



UNCERTAINTY ESTIMATION 16

Bayesian Neural Networks

Standard Neural Network

allegro



UNCERTAINTY ESTIMATION 17

Bayesian Neural Networks

N VAN

Standard Neural Network Bayesian Neural Network
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Variational inference

Predictive distribution:

P(Jl’lx’, Dtr)
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Variational inference

Predictive distribution:

P(‘/’|x’, Dtr) = P(yllx’/ a)) P(wlDtr) dw
H_/

Intractable posterior

We approximate the posterior with a variational distribution g(w).

We want to minimize KL(g(w) || P(w|Dy,)) which is equivalent to optimizing the variational lower bound:
Ly = [ 4(@) log POy la) dw - KL(g(w) || P(@))
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Variational dropout

w = [Wi]{;l

Introduced in Gal Y., Ghahramani Z., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, 2015, https://doi.org/10.48550/arxiv.1506.02142 allegro
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Variational dropout

w = [Wi]1L=1

z;; ~ Bernoulli(p;)
, K;
Wi — Mi . dlag([z,-,]-]jzl)
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Variational dropout
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Variational dropout

Py1¥, D) = [ Py, w) P@IDy) de
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Variational dropout

Py1¥, D) = [ Py, w) P@IDy) de

Q

7
1 P N
fP(y’Ix’, w) g(w) = fz Py, w,) —— w,~qw)
t=1

T - number of variational dropout calls

Introduced in Gal Y., Ghahramani Z., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, 2015, https://doi.org/10.48550/arxiv.1506.02142 allegro
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Variational dropout in BERT
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Uncertainty measures

1 - c . -
usyp = 1 —max ~Zpt sampled maximum probability
ceC y=1
1
Uy = TZ pi log pi predictive entropy
ct
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Variational dropout calibrates NER
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Variational dropout calibrates NER
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Uncertainty identifies misclassified
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Uncertainty identifies misclassified examples
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Uncertainty detects out of distribution examples
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Conclusions

* Named Entity Recognition is an important problem in the e-commerce domain
* Variational dropout enables uncertainty estimation in neural networks

> * Variational dropout can be easily utilized with BERT-based models

* It improves model calibration in NER

* |t allows for misclassification detection and out-of-distribution detection in NER
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Team

a"egro MI_ Research Our projects Talks Blog Open Source Publications Jobs

About us

Machine Learning Research is Allegro’s R&D lab created to develop and apply state-of-the-art machine learning

methods, helping Allegro grow and innovate with artificial intelligence. Beyond bringing Al to production, we are
committed to advance the understanding of machine learning through open collaboration with the scientific
community.

ml.allegro.tech
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Thank you for your attention!
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