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Introduction
Counting bacterial colonies is a fundamental task in microbiology. Currently, manual counting remains the gold standard. This is a time-
consuming and error-prone process, which requires a trained professional. To avoid these issues, the automated method can be applied for the task.
The goal of our work was to design a model that counts and classifies bacterial colonies in Petri dishes using RGB images.

Methods
A common way of counting and classifying objects using deep learning is to first detect them
and then count found instances of different categories. We tested multiple detectors that achieved
state-of-the-art performance on MS COCO dataset:
1 Composite Backbone Network (CBNet) [1]
2 TridentNet [2]
3 Global Context Network (GCNet) [3]
4 Fully Convolutional One Stage Object Detector (FCOS) [4]
Additionally, only for counting, we investigated an approach based on density map estimation.
It is a simpler method, that was proven effective when applied to cell and crowd counting.
We tested three models:
1 Context Aware Network (CAN) [5]
2 Congested Scene Recognition Network (CSRNet) [6]
3 U-Net [7]
An example of true and predicted images for both approaches are presented in Figure 1.

Figure 1: An example of true and predicted bounding boxes and density maps together with the colony count.

Dataset
In cooperation with the University of Wrocław we collected a dataset consisting of 2211 images
of microorganisms grown inside Petri dishes. The data were annotated with bounding boxes, to-
gether 115619 colonies were found and 5 different types of bacteria were distinguished (Figure 2).

Figure 2: Different types of bacteria grown inside a Petri dish.

Results

Table 1. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) obtained using different methods.

Object detection
Model MAE MAPE

CBNet [1] 1.86 6.13 %
TridentNet [2] 1.57 7.92 %

GCNet [3] 2.04 6.02 %
FCOS [4] 1.47 8.40 %

Density map estimation
Model MAE MAPE

CAN [5] 1.22 4.76 %
CSRNet [6] 1.69 5.40 %
U-Net [7] 1.64 5.33 %

Table 2. Mean Absolute Percentage Error (MAPE) obtained using GCNet for different types of bacteria.

E.coli C.albicans P.aeruginosa S.aureus B.subtilis
MAPE [%] 5.82 3.71 8.72 3.16 3.09

For counting bacterial colonies the best results in terms of MAPE were obtained using Context
Aware Network (Table 1). When we additionally take into account classification, the best per-
formance can be achieved with Global Context Network. MAPE for different bacteria types is
presented in Table 2. Performance of bacterial colonies counting and classification is shown in
Figures 3 and 4.

Figure 3: Performance of bacterial colony counting
using CAN.

Figure 4: Performance of bacterial colony counting
and classification using GCNet.
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