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INTRODUCTION

This research focuses on a place recognition task - checking if the data received from the sen-

sor corresponds to a known location, to reduce drift and provide global localization. Known

& flaws of camera-based solutions and increasing LiDAR popularity lead to the following ques-
tions:

* Is camera reliable enough for place recognition across different weather conditions?

e Can 3D LiDAR data be used for place recognition task?
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LRE Ve * Is the information acquired by LiDAR sensors complementary or redundant to camera
pslig, a MATCH? images in case of place recognition?
/  How to process point cloud data by a neural network?
RGB image descriptor descriptor RGB image A triplet VGG-16 neural network architecture serves as descriptor extractor for all locations.

RGB camera images, Velodyne VLP-16 LiDAR readings and GPS data from The USyd Cam-
pus Dataset are used to train and validate the network. The dataset consist of multiple runs
on the same trajectory, in various weather conditions.
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PROCESSING PIPELINE AND ARTIFICIAL IMAGE

Three different input configurations were tested -
camera-based, LiDAR-based, camera-LiDAR-based.

 The joint camera-LiDAR artificial image is created by
scaling the RGB image and stacking the LiDAR intensity
data onto it.
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RESULTS AND CONCLUSIONS

Pre-trained triplet VGG model trained with positive and
negative examples simultaneously, forming a triplet loss
setup.
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Fine-tuning with hard negatives (closer to the neutral
frame) once the training plateau was observed.
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Test data is separated from training data.
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Place recognition system
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Testing conditions | Camera | LiDAR LiDAR

Sunny 82.08% | 81.25% | 85.61%

Cloudy 84.78% | 80.24% | 87.67%

Sunny /Cloudy 86.98% | 82.71% | 89.38%

After Rain 85.53% | 80.24% | 88.99%
Sunset 82'392/ ” 81'392/ ? 87'862/ ” LiDAR sensor is worth using either as a supplement or as a base solution in place recognition.

Very Cloudy 84.68% | 82.09% | 88.58s This research is continued, aiming at:

Mean accuracy 83.49% | 81.11% | 86.91%

Joint camera-LiDAR-based place recognition achieves e creation of a pipeline suitable for point cloud data, with PointPillars, Scan Context or

the best mean recognition accuracy in all analyzed

scenarios.

combined preprocessing,

* maximization of LiDAR data usability in place recognition task.

REFERENCES & CONTACT INFORMATION

1. K. Zywanowski, A. Banaszczyk, M. Nowicki, “Comparison of camera-based and 3D LiDAR-based place recognition across weather conditions”
16th International Conference on Control, Automation, Robotics and Vision (ICARCV) Shenzhen, China, 2020, 886-891.

2. W. Zhou et al., “The USyd Campus Dataset”, IEEE Dataport, 2019. Available: http://dx.doi.org/10.21227/sk74-7419
3. A. H. Lang, et al., “Pointpillars: Fast encoders for object detection from point clouds”, CVPR, pp. 12697-12705, 2019

4. G. Kim et al., “1-Day Learning 1-Year Localization: Long-Term LiDAR Localization Using Scan Context Image”, IEEE Robotics and Automation Letters, vol. 4, no. 2,

pp. 1948-1955, 2019

{kamil.zywanowski, adam.banaszczyk}(@student.put.poznan.pl, michal.nowlcki@put.poznan.pl


http://dx.doi.org/10.21227/sk74-7419

