Hyperparameters optimization for quantum SAT classificator.

Introduction

In this poster I report numerical results for modeling of 2-MAX-SAT as the problem of the Ising model and using quantum simulator SimCIM [1] to solve this model. I show an algorithm of reduction from 2-CNF form into Ising models coefficient and our approach for optimization for SimCIM using hyperopt. I used SimCIM as classification for two classes SAT = 1UNSAT = 0. Optimization has contributed to improved results for 2-MAX-SAT.

2-SAT and 2-MAX-SAT

The 2-SAT is problem of determining the existence of a solution with two variables in one clause.

An example of a problem instance of 2-SAT and his 2-CNF(Conjuctive Normal Form)

$$F = (x_3 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2),$$

e.g $\Omega_1 = (x_3 \lor x_2)$ defines clause.

A related optimization problem known as 2-MAX-SAT is determining the maximum number of clauses, of a given Boolean formula in 2-CNF, that can be made true by an assignment of truth values to the variables $\{x_i\}_{i=1}^N$ of the formula. The 2-MAX-SAT is an NP-Hard problem.

The Ising Model

The Ising model is the mathematical description of phase transition in magnetic fields. The model is defined as weighted graph G = (V, E) where V is set of vertex, E is set of edges. Description of energy (Hamiltonian)

$$J_{ij}$$

$$H(s) = \sum_{\{ij\}\in E} J_{i,j}s_is_j + \sum_{j\in V} h_js_j$$

Here, $J_{i,j}$ correspond to weights of the edges and h_o are biases associated between spins s_i , s_j . Typically interested in finding a particular spin configuration $s^* = \arg \min H(s)$. Finding spin configuration is NP-Hard.

Marcin Wierzbiński

MIM UW

2-MAX-SAT into ISING MODEL

2-SAT is solvable in polynomial time. For each of two variables in clause Ω_k where $k \in \{1, 2, \dots, M\}$ is defined variable: $v_j^k = \begin{cases} -1 \text{ if } x_j \in \Omega_k \text{ and is negation} \\ 1 \text{if } x_j \in \Omega_k \text{ and is not negation} \\ 0 \text{if don't occurs in } k\text{th caluse} \end{cases}$	cient Hami	sampling of lo	<pre>machine (CIM) [2] ^a enables effi- w-lying energy states of the Ising parameters of SimCIM: oznaczenie dla SimCIM number of iterations noise level learning rate coupling(zeta)</pre>	
Base on work from [1] and [2] for formulation I use an algorithm presented below:	d	attempt_num	ample size	
procedure $2CNFTOISING(F)$		alpha:	parametr of method SGD b	
$M \leftarrow$ no. of clauses for formula F $N \leftarrow$ no. of variables for formula F $h \leftarrow$ create a zero vector size N $J \leftarrow$ create zero marix size $N \times N$ $v \leftarrow$ create zero matrix size $M \times N$ for $j = 1M$ do get index of variables i_1, i_2	Optimization for hyper-parameters SimCIM			
	I am are interested in random formulas 2-CNF generated by choosing uniformly at random (with fixed clause density, form amlong all possible clauses. The clause density is defined as: M			
$var_1, var_2 \leftarrow +1$, -1, 0 as in v_j^k			$\alpha = \frac{M}{N} \tag{2}$	
$v[j, i_1] \leftarrow var_1$	where	where $M = no$. of clauses and $N = no$. of variables.		
$v[j, i_2] \leftarrow var_2$		I defined a priors distributions:		
for $j = 1n$ do		parameter	a priori	
for $i = 1M$ do		N	quniform(300, 500, 10)	
$j_1 \leftarrow -1$		sigma	uniform(0.0, 1.0)	
$j_2 \leftarrow 0$ if $w[i, i] < > 0$ fr $i = -$ 1 then		dt le	sguniform(ln(0.01), ln(0.01))	
if $v[j,i] <> 0 \& j_1 == -1$ then $j_1 \leftarrow i+1$		zeta	uniform(0.0, 2.0)	
$J \perp \land \iota \perp$	а	ttempt_num	quniform(950, 1100, 5)	
if $v[j,i] <> 0$ & $j_1 <> -1$ then		alpha	uniform(0.1, 0.9)	
$j_2 \leftarrow i+1$	The o	The objective function is defined as:		
break	$c(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N} \mathbb{1}(y_i \neq \hat{y})$			
$J[j_1, j_2] \leftarrow J[j_1, j_2] + v[j, j_1] \cdot v[j, j_2]$		$C(g, g) = \overline{N} \sum_{i=0}^{n} (g_i \neq g)$		
$h[j_1] \leftarrow h[j_1] - v[j, j_1]$	I using generator from work: [3], adapted for			
$h[j_2] \leftarrow h[j_2] - v[j, j_2]$			esults for optimization is here:	
return J, h	githu	github.com/marcin119a/sat-experiments		
I obtain the local fields h and coupling J in terms of a_{i} This simulator was developed by prof. A. I. Lvovsky.				

the parameters of the given 2-SAT instance. Energy of Ising is expressed as:

$$E_{Prob} = \frac{1}{4} E_{Ising} - \frac{1}{4} M \tag{1}$$

If $E_{Prob} = 0$ then F' is satisfiability SAT = 0.

The coherent Ising machine

MI

$$\alpha = \frac{M}{N} \tag{2}$$

$$c(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N} \mathbb{1}(y_i \neq \hat{y})$$

This simulator was developed by prof. A. I. LVOVSKY ^bStochastic gradient descent ^chttps://bit.ly/342HFKq

mula.

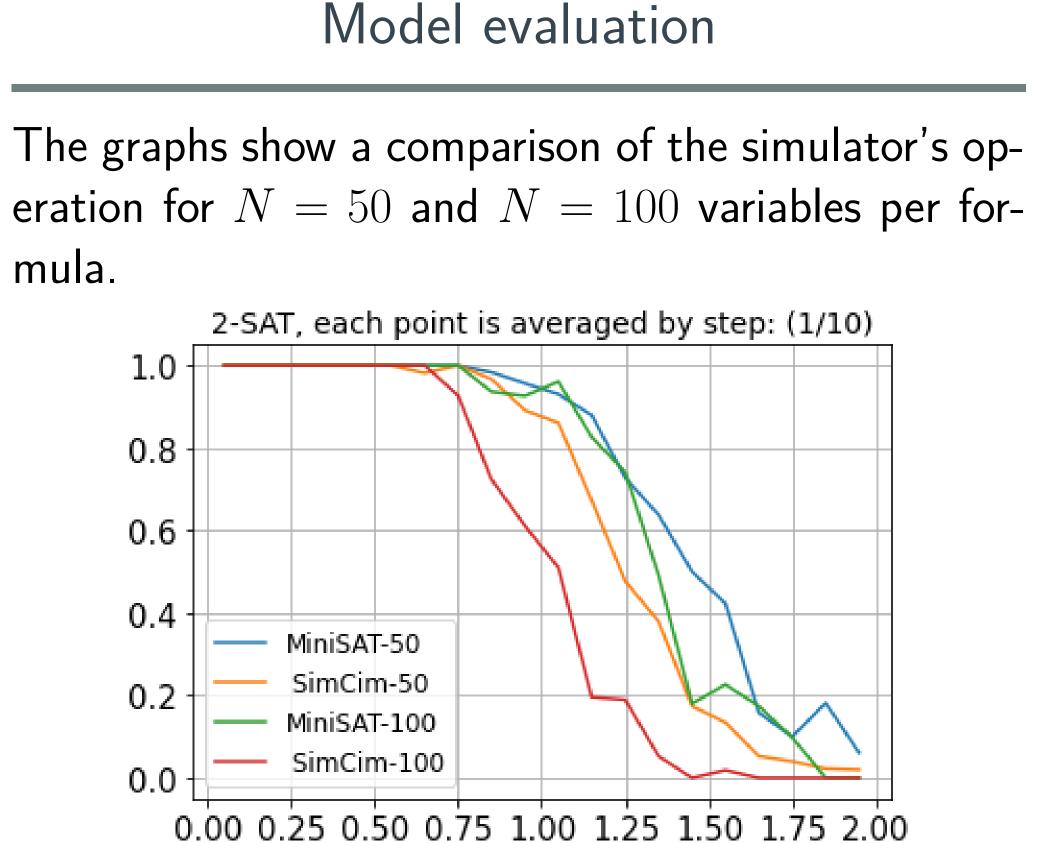


Figure: Fraction of satisfiability formulas depends of picking α

Future work

• Calculate a probability sampling low energy state without finding a ground state.

 Investigate a phase transition without finding an exact ground state.

• Provide new metrics for loss, defined as subset maximum satisfiable percent, depending on critical point = 1

REFERENCES

[1] Siddhartha Santra, Gregory Quiroz, Greg Ver Steeg, and Daniel A. Lidar.

Max 2-SAT with up to 108 qubits.

New Journal of Physics, 16(4):045006, Apr 2014.

[2] Egor S. Tiunov, Alexander E. Ulanov, and A. I. Lvovsky. Annealing by simulating the coherent ising machine. 27(7):10288.

[3] Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski.

Neural heuristics for sat solving, 2020.

KONTAKT