
Recursive CNNs for ImageToLatex
problem

Michał Tyrolski, Szymon Tworkowski
Student @ Faculty of Mathematics, Informatics and Mechanics - University of Warsaw

Abstract

While recurrent neural networks became the most accu-
rate solution for the ImageToLatex problem, they are used
along with lots of tricky architecture improvements. Com-
monly adopted approach is to connect CNN encoders and
RNN decoders with attention mechanisms attached. We
show a more human-like solution based on recursive split-
ting the expression. According to the fact that we propose a
divide-and-conquer algorithm, we also prepared a dataset
with unambiguous expression splits, representing some La-
TeX subset. We compared the state-of-the-art model vs
our structure model combined with that SOTA used for leaf
recognition. Finally, we show that our approach performed
better on our dataset with a particular number of splits.

1. Introduction

ImageToLatex is quite an old problem. Before the deep
learning era, it was commonly approached with different
ideas related to optical character recognition (OCR) meth-
ods [1]. Recently using encoder + decoder architectures
with various modifications became the most popular ap-
proach to produce latex expressions from image. In such
models, encoder often has convolutional neural networks
(CNN) as a backbone for producing feature maps [2,3,4],
sometimes using custom modifications like row-encoding
[2]. For decoding, there are usually recurrent neural net-
works (RNN) [2,3,4].
In this work we modify the parsing expression idea pre-
sented by Zanibbi et al. [5]. Instead of OCR methods,
we use CNNs to predict bounding boxes for operators and
operands. Recursively repeating CNN calls gives us knowl-
edge about expression tree structure with bounding boxes
for each subtree. Then any model can be used to recog-
nize leaves, especially those with ability to properly recog-
nize expressions with length bounded by a constant C for
example like stacked CNNs [6].

2. Model

2.1 Structural Model MS
The model responsible for building the tree structure is a
CNN with ResNext18 [10] as a backbone with a small cus-
tom head. Bounding boxes are predicted along with cat-
egories simultaneously. Category is represented as 1-hot
encoding and each bounding box (x1, y1, x2, y2) as

(x1, y1,
√
x2 − x1,

√
y2 − y1)

Similarly to Redmon et al. [9], we define loss function L for
a batch as follows:

L({Bi}, {Ci}) =
1

N

∑
i

(L1(Ci, C
∗
i ) + λH(C∗i )L2(Bi, B

∗
i ))

where L1 = LOGLOSS, L2 = MSE and (Bi, B
∗
i ), (Ci, C

∗
i ) are

predicted, ground-truth values for boxes and categories re-
spectively, H(C) = 1C 6=leaf. The purpose of λ is to increase
the effect of box loss and it is empirically chosen. In our
case λ = 50. Accuracy of structural model is measured
as pair A = (Ac, I) where Ac is a standard accuracy and
I = IOU. On our dataset we achieved A = (99.9%, 95.4%)
validation accuracy for the first split.
MS proceeds with recursive calls to CNN (Figure 1) as long
as it doesn’t detect a leaf or achieve a hyperparam depth
limit. Moreover, training is done only on the first split for
each entry from the dataset.

Figure 1: Sample expression tree built with recursive calls
to CNN. Own research.

During inference, each node which isn’t recognized as a
leaf is cropped with its bounding box prediction, then cen-
tered and padded in order to match the input shape. Then
the next CNN call is taken. We do not resize the cropped
images, instead we decided to apply a shrinking augmen-
tation in training.

2.2 Leaf Model ML
As a recognizer for leaves and baseline to compare
we chose Yuntian Deng, Anssi Kanervisto, Jeffrey Ling,
Alexander M. Rush 2016: Image-to-Markup Generation
with Coarse-to-Fine Attention [2]. We trained this model
for 15 epochs on a full dataset. Expression depth d is de-
fined as the number of nodes in the longest path from root
to leaves. If MS stops before reaching d, ML is used as a
recognizer for the whole subtree.

2.3 Dataset
Dataset is generated from scratch. It contains 100008 im-
ages with shape (224, 224, 3). We support 17 operators, 8
of them unary, another 8 binary and 1 leaf. We decided to
create our own dataset because MS need bounding boxes
coordinates. Each entry in the dataset consists of the fol-
lowing information: name, operator name, sorted operands
bounding boxes in form of (x, y, dx, dy), normalized label
and depth. Max supported depth is 4, deeper equations
were unreadable in that resolution.

Figure 2: Sample expression of depth 4 along with its la-
beled version. Own research.

In order to generate a dataset, we had to create a MS loss
function to take into account various possible splits along
with ensuring the convergence of the model or find an un-
ambiguous way of splitting the expressions. We went with
the second approach. The split is done on the left most in-
line operator if the operator on top is binary, otherwise the
argument of unary operator is taken.
Let E(d) be a set of all supported expression with depth ≤ d
and In : N+→ P (Expr) such that

In(d) = ({e14e2|e1 is not an inline expression}
∪ {∆(e)|∆ is an unary operator}
∪ {∆(e1, e2)|∆ is not an inline operator }
∪ {e|e is a leaf}) ∩

⋃
k≤d

E(k)

In our case inline operators ∈ {+,×, ?,÷,⊗,−, ·} and an
expression is inline if and only if the top operator is inline.
Also, for our purpose

⋃
d In (E(d)) effectively approximates⋃

dE(d). That observation allowed us to generate a dataset
without need to parse latex expressions. Instead of sam-
pling fromE and parsing them, we generated colorful In and
deterministically detected boxes as shown in Figure 2. As
part of augmentation, we decreased the quality of a small
sample of dataset depending on sample depths in order to
simulate an inference process.

3. Results and discussions

3.1 Comparison
We compared MS with ML for subtree recognizing versus
ML for whole sentence recognizing. Results are shown in
Table 1.

Table 1: Comparison between MS+ML and ML. Own re-
search.

Depth limit BLEU EDIT
0 Baseline 81.1% 78.1%
1 MS+ML 89.1% 85.4%
2 MS+ML 87.2% 82.4%
3 MS+ML 83.3% 75.6%
4 MS+ML 80.3% 68.2%

As shown in table, MS+ML achieves much better results
for 1 and 2 depth steps and better BLEU metric for d = 3.
As can be expected, for more steps baseline still achieves
better scores. We identify two main reasons for decreasing
dominance of MS+ML over ML standalone. Firstly, while

MS first bounding box detection is almost ideal, error prop-
agates and at a certain depth model is not able to recog-
nize proper boxes. Moreover, after each MS inference, we
rescale box expression which degrades the quality of next
input images. Our augmentation mentioned in the dataset
section improves MS but after few rescaling expressions
become unreadable, even for humans. On the other hand,
many im2seq models have problems recognizing the struc-
ture of long expressions, especially without much training.
It can be concluded that our approach has potential to im-
prove accuracy using a small number of splits for sota mod-
els on real itl100k dataset.

3.2 Future work
That approach is able to improve many models on image to
sequence problems. In order to compete on a real dataset,
the current one should be extended for more symbols, more
unary and binary operators along with operators with much
more operands. Also upper and lower indexes and complex
structures like matrices should be supported. It should be
considered if it is worth detecting forest structure instead of
trees only, especially if the target is to generalize. To make
models useful on a bigger scale, the architecture should
accept bigger image shapes, custom too. Also, in terms
of longer sequences, there is a need for the loss and the
dataset creation which prefer the middle operator.

4. Implementation

To ensure the reproducibility of this work and to sup-
port open science principles, we made the code and
dataset available on https://github.com/kakainet/TexNet and
https://github.com/kakainet/TexSet. Details are provided in
the readme. Code is written in fast.ai [7] and PyTorch [8].
We use ready implementation of model proposed by Deng,
Y. et al. [2], with small modifications related to data aug-
mentation as a backbone and train on our dataset.

5. References

1. Suzuki, M., Kanahori, T., Ohtake, N. and Yamaguchi, K.,
2004, July. An integrated OCR software for mathematical
documents and its output with accessibility. In Interna-
tional Conference on Computers for Handicapped Per-
sons (pp. 648-655). Springer, Berlin, Heidelberg.

2. Deng, Y., Kanervisto, A., Ling, J. and Rush, A.M., 2017,
July. Image-to-markup generation with coarse-to-fine at-
tention. In International Conference on Machine Learning
(pp. 980-989).

3. Wang, J., Sun, Y. and Wang, S., 2019. Image to latex with
densenet encoder and joint attention. Procedia computer
science, 147, pp.374-380.

4. Genthial, G. and Sauvestre, R., 2016. Image to Latex.

5. Zanibbi, R., Blostein, D. and Cordy, J.R., 2002. Recog-
nizing mathematical expressions using tree transforma-
tion. IEEE Transactions on pattern analysis and machine
intelligence, 24(11), pp.1455-1467.

6. More, A., 2018. IMAGE TO LATEX VIA NEURAL NET-
WORKS.

7. Howard, J. and Gugger, S., 2020. Fastai: A layered API
for deep learning. Information, 11(2), p.108.

8. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.
and Desmaison, A., 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
neural information processing systems (pp. 8026-8037).

9. Redmon, J., Divvala, S., Girshick, R. and Farhadi, A.,
2016. You only look once: Unified, real-time object detec-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 779-788)..

10. Xie, S., Girshick, R., Dollár, P., Tu, Z. and He, K., 2017.
Aggregated residual transformations for deep neural net-
works. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 1492-1500).


