Unsupervised image segmentation trained on a single image

Piotr Migdał (QF, ECC), Bartłomiej Olechno (ECC)

Typical image segmentation

- Supervised
- Many similar images
- If transfer learning: similar as patterns in ImageNet or COCO

https://deepsense.ai/deep-learning-for-satellite-imagery-via-image-segmentation/

But what if it is different?

Our case: scans of race tracks

- Yet, we want to exract subtle features (e.g. angle of tire tracks)

• Each with various scaled, in different place (continent, foliage, season, etc)

Motivation: word2vec

"A word is characterized by the company it keeps" - John Rupert Firth

$\vec{v}_{dog} \cdot \vec{v}_{cat} \approx \log \frac{P(\text{dog AND cat})}{P(\text{dog})P(\text{cat})} = PMI(\text{dog, cat})$

Motivation: word2vec

https://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html

Tiles, prediction

-				
		positive		
	anchor		negative	

- Noise Contrastive Estimation
- Triplet loss
- Linear loss function (does not work well)

Loss function

Neighbors

Not-neighbors

Serialized

Our case

Other nice examples

insut image																													
1	2	1	1	1	1	1		1	1	2	1	3	З	1	1	1	1	1											
1	1	2	2	З	З	2		1	1	з	З	1	1	2	1	1	З	4											
1	1	1	1	1	1	1				1	1	З	2	1			2	1											
			1	2	2	2	1	1		1	1	1					2	1	З	2	2	2	3	1					
1	1	1				2	1	З	1	1	1	1				1	2	2	1	1	1	1	2	1	5				
1	1	1		1	2	4	1	1	1	1		1				1	1	1		1	1	1	2	2	5				
2	2	1		1	1	1	3	2	2	з		2				1	1	1	1	1	1		1	1	4				
1	1			1	З	З	З	1	з	1		1	1	1	1		1	1	з	1	2		1	1	з		3	1	
1	1				2	1	4	1	4	1					1		1	1	З	1	2				1	1	1		
					2	1	4	1							2	1	2	2			1			1	1	1			
					1	2	4	З													1	2	2	2	1	1			
	1	1	2	2	2	2	1																			Z	1		
	1	1	З	1	1	2	З																				1		

Other nice examples

Interactive

GREEN: close

RED: far

https://www.w3.org/2020/Talks/mlws/piotr_migdal/slides.html

Thanks you!

