
NeuralNDCG: Direct Optimisation of a Ranking Metric
via Differentiable Relaxation of Sorting

Przemysław Pobrotyn Radosław Białobrzeski
Machine Learning Research at Allegro.pl

ML Research

Learning to Rank

Problem formulation

Learning to Rank (LTR) is concernedwith optimising the global ordering of a list of items according

to their utility to the user. It is ubiquitous in industrial applications - whenever one needs to

optimise the order of a list of search results, LTR algorithms provide a solution. To frame it as

a machine learning problem, one needs a dataset of search results together with their utility to

the users. The utility can be expressed as either graded relevance (human-annotated, on a scale

of, say, 1 to 5) or binary relevance (usually, clickthrough logs of a live search engine). Given such

a dataset, a ranking function can be learned to produce a desired permutation of items. Most

LTR algorithms fall into score & sort type: using the training data, a scoring function f is learned
which scores items, either individually or by looking at the entire list at once. Items are then

sorted in descending order of the scores. To learn f , typically one uses a pointwise, pairwise or
a listwise ranking loss function. Popular examples include RankNet [1] or ListNet [2].

Evaluation metric

To evaluate the ranking function, we need a metric that emphasises relevant items being placed

on top of the list.

The commonly used metric in LTR is (Normalised) Discounted Cumulative Gain.

NDCGk = N−1
k

k∑
j=1

g(rj)d(j)

where rj denotes the relevance of the item ranked at j-th position, g(rj) denotes a gain function,
d(j) denotes a discount function, and Nk denotes the maximum value of

∑k
j=1 g(rj)d(j), which

is attained when documents are ranked in the descending order of ground truth relevance labels.

Typically, the gain function is g(rj) = 2rj − 1 and the discount function is d(j) = 1/ log2(j + 1).

Limitations

Since NDCG relies on the sorting operator, its derivative is either zero or undefined. Thus, it is

unsuitable for gradient based optimisation. Popular ranking loss functions are only a proxy to the

evaluation metric, creating a mismatch between training and evaluation.

Our solution

We propose a novel differentiable approximation to NDCG, called NeuralNDCG. We introduce

two variants of the proposed loss function and demonstrate empirically its effectiveness.

Contributions

We introduce NeuralNDCG, a novel smooth approximation of NDCG based on a

differentiable relaxation of the sorting operator.

We evaluate our approach onWeb30K and Istella, benchmark datasets for learning to rank

and show favourable performance as compared to baselines

We plan to open-source our implementation of NeuralNDCG as part of allRank, a PyTorch

framework for reproducible, neural LTR

Loss formulation

Sorting relaxation

Our novel NDCG approximation relies on a differentiable approximation of the sorting operator.

To that end, we use NeuralSort [3].

Recall that sorting a list of scores s is equivalent to left-multiplying a column vector of scores
by the permutation matrix Psort(s) induced by permutation sort(s) sorting the scores. Thus,
in order to approximate the sorting operator, it is enough to approximate the induced permuta-

tion matrix. In [3], the permutation matrix is approximated via a unimodal row stochastic matrix

P̂sort(s)(τ) given by:

P̂sort(s)[i, :](τ) = softmax[((n + 1 − 2i)s − As1)/τ] (1)

where As is the matrix of absolute pairwise differences of elements of s such that As[i, j] =
|si−sj|, 1 denotes the column vector of all ones and τ > 0 is a temperature parameter controlling
the accuracy of approximation. For brevity, for the remainder of the work we refer to P̂sort(s)(τ)
simply as P̂ .

NeuralNDCG in two flavours

Using the approximation of the sorting operator given by NeuralSort, we define two approxima-

tions to NDCG. In the first one, dubbedNeuralNDCG, we first approximately sort the relevancies

using P̂ andmutliply the result by the logairthmic position discounts. The summation is done over
the ranks of documents. In the other variant, called NeuralNDCG Transposed (NeuralNDCGT),

the approximate permutation matrix P̂ is transposed so that we use it to approximately sort the
discounts in the order of the documents, mutliply the result by documents relevancies and then

sum over the documents, not ranks. Essentially both variants differ in the order they carry out

matrix multiplications, needing to transpose P̂ in NeuralNDCGT as a result. The formulae for

both loss functions are as follows:

NeuralNDCGk(τ)(s, y) = N−1
k

k∑
j=1

(scale(P̂) · g(y))j · d(j) (2)

NeuralNDCGT
k(τ)(s, y) = N−1

k

n∑
i=1

g(yi) · (scale(P̂ T) · d)i (3)

whereN−1
k is the maxDCG at k-th rank, scale(·) is Sinkhorn scaling and g(·) and d(·) are their gain

and discount functions. In the second formula, d is the vector of logarithmic discounts per rank
set to 0 for ranks j > k.

Properties

In computation of P̂ T , the temperature parameter τ allows to control the trade-off between the
accuracy of the approximation and the variance of the gradients. Generally speaking, the lower

the temperature, the better the approximation at the cost of a larger variance in the gradients.

In fact, it is not difficult to demonstrate that:

lim
τ→0

P̂sort(s)(τ) = Psort(s) (4)

Thus, as the temperature approaches zero, NeuralNDCG approaches true NDCG in both its

variants. See Figure 1 for examples of the effect of the temperature on the accuracy of the

approximation.

0 1 2 3 4 5
x

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ND
CG

True NDCG
=0.01
=0.1
=1.0
=10.0

Figure 1. Given ground truth y = [1, 2, 3, 4, 5] and a list of scores s = [1, 2, 3, 4, x], we vary the value of the score x
and plot resulting NDCG induced by the scores along with NeuralNDCG for different temperatures τ .

Experimental results

We train a Transformer based, Context-Aware Ranker [4] with the proposed loss functions and

verify their performance on two benchmakr LTR datasets, WEB30K and Istella. Results are pre-

sented in the Table 1 below.

Table 1. Test NDCG on Web30K and Istella. Boldface is the best performing loss column-wise and † next to a
result means there is no statistically significant difference between that result and the best result in the column,

according to t-test at level of 0.05.

Loss WEB30K Istella

NDCG@5 NDCG@10 NDCG@5 NDCG@10

NeuralNDCG@5 49.93 51.87 65.46† 70.09

NeuralNDCG@10 50.31† 52.33† 65.97† 70.90†

NeuralNDCG@max 50.42† 52.36† 65.55† 70.50

NeuralNDCGT @5 50.29† 52.11 65.32 69.90

NeuralNDCGT @10 50.27† 52.26† 65.81† 70.83†

NeuralNDCGT @max 50.66† 52.74† 65.67† 70.51

ApproxNDCG 49.35 51.14 63.28 68.08

ListNet 50.51† 52.67† 65.76† 70.86†

ListMLE 49.19 51.36 60.25 66.42

RankNet@5 48.53 50.18 64.70 69.00

RankNet@10 50.02 51.88 65.83† 70.90†

RankNet@max 49.30 51.62 64.59 70.40

LambdaRank@5 48.20 49.77 63.74 67.82

LambdaRank@10 48.98 50.93 65.05 69.54

LambdaRank@max 50.96 53.00 65.90† 71.09†

RMSE 50.07† 51.97 66.01 71.15

LambdaMART 46.80 49.17 61.04 65.74

allRank - for all your ranking needs!

This reasearch was carried out in allRank, an open source PyTorch framework featuring:

out-of-the-box support for feed-forward and self-attention based architectures

implementation of most popular pointwise, pairwise and listwise losses

easy extensibility with your fancy new ranking loss function

support for WEB30K and Istella, the standard ranking datasets

We plan to open source our implementation of NeuralNDCG in the near future.

Visit github.com/allegro/allRank for code and a getting-started guide.

Contributions are welcome!

References

[1] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender.

Learning to rank using gradient descent.

In Proceedings of the 22Nd International Conference on Machine Learning, ICML ’05, pages 89–96, New York, NY, USA, 2005. ACM.

[2] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li.

Learning to rank: From pairwise approach to listwise approach.

In Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pages 129–136, New York, NY, USA, 2007. ACM.

[3] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon.

Stochastic optimization of sorting networks via continuous relaxations.

In International Conference on Learning Representations, 2019.

[4] Przemysław Pobrotyn, Tomasz Bartczak, Mikołaj Synowiec, Radosław Białobrzeski, and Jarosław Bojar.

Context-aware learning to rank with self-attention.

In SIGIR eCom ’20, Virtual Event, China., 2020.

virtual-event.mlinpl.org ML in PL Virtual Event, Online, 18.12.2020 przemyslaw.pobrotyn@allegro.pl

conference.mlinpl.org
mailto:przemyslaw.pobrotyn@allegro.pl

