Extreme Classification

Multi-label classification

- When the number of labels reaches the order of hundreds of thousands or millions, using a naive approach that scales linear with a number of labels (i.e., one-vs-all) may not be feasible.

Conditional marginal probability

- Conditional marginal probability of a label $q_l(x) = \sum_{y \in \mathcal{L}} P(y|x) \times P_l(y)$

- Bayes classifiers for popular MLC losses are directly expressed as conditional label probabilities:
 - Hamming loss $\sum_{l=1}^{L} (y_l \neq \hat{y}_l) \times P_l(y)$
 - Precision at k: $\sum_{\sum_{l=1}^{k} (y_l \neq \hat{y}_l) \times P_l(y) = 0}$
 - macro F-Measure: $2 \times \frac{P_l(y) \times \text{Recall}_l(y) \times \text{Precision}_l(y)}{P_l(y) \times \text{Recall}_l(y) + \text{Precision}_l(y)}$
 - and others like micro, FM, DC, GCP

- Hence accurate estimation of $q_l(x)$ is crucial for solving XML problems.

Probabilistic Label Trees (PLTs) [6]

- PLTs follows the learning reductions framework: the original problem is decomposed into a set of base problems organized in a tree structure.

- Path from the root to a leaf corresponds to one and only one label and factorizes conditional probabilities:
 \[
 q_l(x) = \prod_{t \in \text{path}} P_l(x_t | x_{\text{parent}(t)})
 \]

- Efficient learning, requires updating at most $|\mathcal{Y}|$ paths per example.

- Different tree-search algorithms can be applied for prediction:
 - beam search (approx. top-k prediction, O(\log n) for balanced trees)
 - uniform-cost search (exact top-k prediction, O(kn) under additional assumptions)
 - threshold-based search (O(\log n) under additional assumptions)

- PLTs has been recently implemented in several state-of-the-art algorithms: FastXML [7], extremeText [1], R poco [8], AttentionXML [9].

Theoretical guarantees of PLTs

- Theorem [6]: For any distribution P and internal node classifiers f_t, the following holds:
 \[
 (1 - \epsilon) \sum_{l=1}^{L} P_l(y) \leq \hat{P}_t(y) \leq (1 + \epsilon) \sum_{l=1}^{L} P_l(y)
 \]

- Where $y_l \neq \hat{y}_l$ is binary classification regret for a strongly proper composite loss l (e.g., logistic loss) and λ is a constant specific for loss l.

- This theorem leads to guarantees for such metrics as Hamming loss, generalized performance metrics, and precision [6].

napkinXC

- Other state-of-the-art methods for XML:
 - It is hard to implement most of the XC algorithms efficiently in high-level languages like Python and Java.
 - Lack of easy to use XC software/libraries.
 - napkinXC:
 - Simple and fast library for extreme multi-class and multi-label classification for Python with C++ back-end.
 - Implements SOTA version of PLs and few other algorithms.
 - Allows training a classifier for very large datasets in few lines of code with minimal resources.
 - Easy to use, follows Scikit-Learn API and supports NumPy and SciPy data types.
 - Implements various prediction algorithms for optimal prediction for different measures (e.g., Hamming loss, precision at k, macro and micro F-measures).

Asterisk paper [5] Science/advances/2020/212218
Source code: https://github.com/mwydmuch/napkinXC
pip: https://pypi.org/project/napkin/

Results: Recommendation

Results: Extreme Classification

Table 1: napkinXC compared to state-of-the-art algorithms on XML repository datasets.

Dataset	napkinXC	FastXML	PfastreXML	PLtrees	FastXML-M	ExtremeText	T=3	Offline
Amazon Books	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05
Amazon Video	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05
Amazon Music	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05
Amazon Games	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05
Amazon Audible	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05
Amazon Appstore	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05
Amazon Kindle Store	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05
Amazon Associates	15.95	12.05	8.57	15.95	12.05	8.57	15.95	12.05